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1. The proof process of d, =d,c+2h(n" -1).
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Fig. S1.  Schematic diagram
As shown in Fig. S1, the light propagates through a homogenous media with the thickness of
h. The light field is U, (x,)1) on the x;y; front plane, and itis U, (x,,»,) on the exit plane.
If the medium is air whose refractive index n=1, then the light filed on the x;y, plane is

jkh a2 =0 )2 +(n2-n)
U, (xz,yz):j_Th”.U] (xl,y] )ej”[( R ]dx.dyl, (S1)

where A is the wavelength of light in air. If the light propagates in the medium of refractive

index n, the wavelength is replaced with An~', and the light filed on the x,y; plane is
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Let H=hn"', then Eq. (S2) can be written as

kH i x2=x1 ) +H(y2-3)?
U; (xzaJ’z) = ejk("hiH);_H”.Ul (xlayl )6/21"[(“. e ]dxldyl. (S3)

From Eq. (S3), it can be seen that U, (Xz,yz) is equivalent to U, (xl,yl) propagating
through distance H in air and adding a constant phase e/*"-) = H is rewritten as
H=h+h (n“ - 1) . Because the light propagates BS with a thickness of / twice, the equivalent
propagation length in air from the lens to the CCD

dy =dc+2h(n™" -1), (S4)
where dic is the distance between the lens and the CCD camera.

The additional phase factor e*""~#) appears in the expression of light field in the above
equivalence process. Because this factor appears twice in both the horizontal and vertical
components, the products of the horizontal (vertical) component and the conjugate of the
vertical (horizontal) component in the interference will cancel out and the four e*"-)
factors disappear. Therefore, this phase factor will be ignored in the following consideration.
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2. The simplified process of U, (7)= ﬁefk("”"z)m (7, )xe" i .
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We assume that the Fresnel approximation condition is always satisfied in our system. The

vertical component of the point 7 =(x,,y,) on the front surface of L is
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Where u, (f,,) is the vertical component of the object point 7, =(x,,,) , and
ke
S, (7)=u.(7)d" ek g’ gt . Obviously S, ( ) is independent of the coordinates

(xf, yf) . The light field on the rear surface of lens L is
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Where fis the focal length of lens and d;' =d;' — f'. The light field of the point 7 =(x, )
on the CCD plane is
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U, (F)= ”U, 7 )2 2Pl \dxdy,. (S7)

Eq. (S6) is substituted into Eq. (S7), and the square term in the integral calculation is
expanded. Finally, all the terms unrelated to the (xf, y f) are extracted to the outside of the

integral calculation, and the following result is obtained

Jjkd, & x2+y?)dy
UJ_(F = e SJ_ ’70)612( i )dA
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The integral calculation in U, (7) can be written as the form of Fourier transform, that is
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where Dj' =d;'+d;' =di'+d5' — f7'. By looking at the Fourier transform table, we get
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Eq. (S10)and S, (7 ) are substituted into Eq. (S9), and obtain
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3. The simplified process of U, (7)=—"—-e/ @y, (7 )e 2 4 44 erd ddds .
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Eq. (S11) can be used to obtain the light field U&-(Z) of the point 7 =(x,,,) on the front
surface of SLM in the horizontal direction. Replace u, (;70) and d> in Eq. (S11) with u, (170)

and d3, respectively, we can obtain
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Where D;'=di'+d;y'—f"' and u, (f,,) is the vertical component of the object point
7, =(x,,¥,) . Let the focal length of the lens loaded on the SLM be £, then the light field on the
rear surface of the SLM is U, (7:)=Us (%) xexp[~j(k/2)(x! +¥!) '], and the light field on the
CCD surface is

/kd“ (=5 )2 H(—ys)?]
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The complete expression of U g (rs) is substltuted into U, (7), and all terms that are not

related to the (x,, ys ) are extracted out of the integral calculation. Then we get Eq. (S14).
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To simplify Eq. (S14), let S, ()= D, (jAdidsd,) " ey, (7 )e" 24 . The

square terms in the integral calculation are expanded, and the items not related of (xs, y,) are
extracted out of the integral calculation, and get
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The integral calculation in U, ( 7 ) can be written as the form of Fourier transform, that is
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where Di' =d;' —D,d;* - f;' +d;'. By looking at the Fourier transform table, we get
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The square term in Eq. (S17) are expanded and substituted into Eq. (S16) together with the
expression of S, (FO) . The simplified process is completed.
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4. The simplified process of U,/(F)Ui(F):—D*lA’zfzfs”//(Fo)”i(Fﬂ)e%[w e,

Let U,(7)U:(7)=U.U,,where U, is the set of constant coefficients of all items not related

to the coordinates r,and r, and U, is the set of items related to 7, and 7.
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The process of manually simplifying the constant factor C, (n = 1,2,3,4) in Eq. (S19) and
Eq. (S20) is complicated, and it is difficult to find the relationship between them. Therefore,
we use Python to process. We set the distances d1, d3, ds and lens focal length f'and f; as known
quantities, and d>, D1, D>, D3 are represented by the known quantities, that is

d2:d3 +d4, (SZI)

Dl_l = d1_1+d2_1 _f_l, (822)

DEI — dlfl_'_d;l _ffl, (823)

D' =di' - Dydy? — 7' +d . (S24)

The Python code is at the end of the supplemental document. It is found that every C, contains
the same factor a a. And we get

a :[d1d3+d1d4 —dlf_d3f_d4f]
X[dld3d4 —dds f,—did,f —did. [, ""dlfxf_d3d4f+d3fxf+d4fsf],

U.=-a'f2f,, (S206)
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Let A, =d,f, A=dd;—d,f—d;f ,a and U, are expressed as

(S27)
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The exponential part of U, can be written as square form. And we get
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Let D=aA™?, Eq. (S30) can be rewritten as Eq. (S31), and the simplified process is
completed.
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Python code for the simplified process of C,

from sympy import symbols, exp, factor

dl1, d3, d4, £, fs, k = symbols('d1 d3 d4 f fs k')

d2=d3+d4

DlI=1/(1/dl1+1/d2-1/1)

D2=1/(1/d1+1/d3-1/1)

D3=1/(1/d3-D2/d3**2-1/fs+1/d4)

Cl=(D2*D3/dl/d3/d4 *exp(lj *k *(dl +d3 +d4))) * (D1 /dl/d2 * exp(-1j *k * (d1 + d2)))
C2=(dl -D2)/dl **2-D2 **2 * D3 /(d] **2 *d3 **2)-(dl - D1)/dl **2
C3=(d4-D3)/d4 **2-(d2-Dl1)/d2 **2
C4=-2*D2*D3/dl/d3/d4-(-2*D1/dl1/d2)

C1 = factor(C1)

C2 = factor(C2)

C3 = factor(C3)

C4 = factor(C4)

print(fC1 = {C1}")

print(fC2 = {C2}")

print(fC3 = {C3}")

print(fC4 = {C4}")



