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Surpassing soliton compression
limits in anomalous dispersion high
power erbium fiber comb:
supplemental document

This supplement compares different pulse shapes and the benefits of pulse shaping, presents
scaling laws for application to different systems, and includes more details of the system and
comb measurements.

1. NUMERICAL PULSE SHAPE OPTIMIZATION

Here we numerically investigate nonlinear fiber pulse compression in anomalous dispersion fiber
with a variety of different pulse inputs, and how they evolve with pulse shaping optimization.
We use full amplitude and phase, as well as phase only spectral domain pulse shaping. We find
that Jacobi pulses are a good approximation to optimized pulse forms that allow for nonlinear
pulse compression without reducing pulse quality as characterized by the Strehl ratio.

As in the Simulation section, the following is based on the standard nonlinear Schrödinger
equation (Eqn. 1), with the chirped FBG compressor represented by an infinitesimally thin, strictly
linear phase element, which produces the most salient features. The parameters here are based
on the experimental values with an input pulse having 100 nJ energy, 250 fs FWHM, a chirped
mirror pair with dispersion of -3700 fs2 and a standard telecom fiber as a nonlinear compression
element with a 4 cm length. The pulses are originally formed in the temporal domain, so the
parabolic pulse will start with an unrealistically large bandwidth beyond the Er gain profile. We
then use a stochastic parallel gradient descent algorithm [1] to optimize the fitness parameter
F = (peak power)× (Strehl ratio) at the output of the system using spectral amplitude and phase
changes at 30 spectral sampling points in a bandwidth of 30 THz (angular frequency). This
bandwidth matches the actual pulse shaper, while the spectral resolution is around 4 times higher
to reduce ringing in the time and spectral domains.

Fig. S1. Numerical optimization of output peak power and pulse quality as temporal Strehl
ratio by phase and amplitude shaping of the input pulse. Labels indicate the initial pulse shape,
(phase) indicates phase-only shaping.

Fig. S1 shows the progression of output peak power and the temporal Strehl ratio for pulse



quality as the algorithm optimizes the phase and amplitude of the input pulse for different initial
pulse shapes: an unchirped parabolic pulse, an unchirped Jacobi pulse, and chirped Gaussian and
sech2 pulses. For the Gaussian pulse input, we also show fitness improvement when using phase
only pulse shaping with parameters matching the experimental shaper. Unlike the calculation in
the main text, here all pulses have the same energy, which is why the parabolic and Jacobi pulses
have higher peak power, as they have no tails.

Before optimization, the pulses rank as expected. The parabolic ideal has the highest peak
power, but a poor Strehl ratio from the unrealistically broad spectrum. The Jacobi form has both
high peak power, and good Strehl ratio from the reasonable bandwidth. Optimization does not
cause much improvement of this already optimized form. The standard Gaussian and sech2

pulses perform relatively poorly, but can be improved greatly by shaping into a Jacobi form. As
the algorithm settles into a local minimum, the shaped standard pulses still have some wings
around the peak, keeping the peak power lower than a pure Jacobi.

For the Gaussian, including amplitude shaping on top of phase shaping does not significantly
improve the output, showing that a Gaussian spectrum is, at least locally, a good form. Using
phase shaping increases the peak power here by about 30%, relative to a perfect Gaussian that has
not been deformed in an amplifier, even with the relatively low resolution of the heated stretcher
grating. A true Jacobi or nearly parabolic pulse could theoretically provide another 10 or 20%,
but requires impractical broadening and shaping of the amplified spectrum.

Another way to look at the optimization starting from the Jacobi pulse is with the difference
between the input Jacobi pulse and the shaped pulse given by the misfit parameter M:

M2 =

∫ t2
t1
[P(t)− PJ(t)]2dt∫ t2

t1
[PJ(t)]2dt

(S1)

where P(t) is the power as a function of time of the shaped pulse, PJ(t) is the power of the initial
Jacobi pulse, and t1 and t2 are the truncation points where the initial Jacobi pulse goes to zero.

The misfit parameter as a function of iteration number is shown in Fig. S2. It stays below 0.012,
showing that the small fitness improvement, even with high resolution amplitude and phase
optimization, is not from a large change in the pulse shape. The spectral and phase differences
with the optimized Gaussian are not very important, as the SPM in the propagation dominates.
The algorithm is unable to significantly improve the Jacobi pulse, indicating it is a robust local
maximum.

Fig. S2. Evolution of misfit parameter of a Jacobi pulse with iteration number while optimizing
the fitness of the output pulse by phase and amplitude variation. The misfit parameter stays
below 0.012.

2. SCALING

We consider here the propagation after a thin FBG compressor of an intense, unstretched input
pulse through a short fiber, followed by chirped mirrors, and explore parameter scaling for
different systems with similar performance characteristics. Spectral modification by self-phase
modulation δω is proportional to dI/dt (like plotted in Fig. 8 in the main text), fiber length
znl , and the nonlinear parameter γ, so we can approximate δω ∝ γznl P0/τ with peak power
P0, and temporal FWHM τ. The resulting chirp on the pulse is the frequency change with time
proportional to d2 I/dt2, or approximately: δω/τ ∝ γznl P0/τ2.
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We can use the first relation to maintain spectral broadening for different pulses by adjusting
the fiber length according to znl ≈ C1τ/γP0, where C1 = 35 fs2. The second relation tells us what
chirped mirror dispersion D2 is appropriate with D2 ≈ C2τ2/γznl P0, with C2 = 0.25 m/s2. The
values for C1 and C2 are from our system parameters, and provide a guide for achieving similar
behavior to our laser from different systems. We numerically verified these approximate scalings.
The effective nonlinearity parameter γ is reduced by up to 100 times in large mode area fibers,
meaning Jacobi pulse compression can be used at up to 40× higher energies, limited only by the
self-focusing damage threshold of around 10 MW at 1.5 µm.

Beyond unstretched pulses, it is interesting to consider the potential for energy scaling with
moderately chirped pulses and to what extent the Jacobi shape remains useful. In Figs. S3, we
show optimal input pulse forms and their corresponding compressed shapes for input pulse
energies of 100, 200, 400 and 800 nJ, while scaling the dispersion of the chirped mirrors by factors
of 1, 2, 4 and 8. Here we use phase only pulse shaping to optimize the pulse form.

The Strehl ratio remains over 90% for all four pulse energies, and the pulses compress to less
than 60 fs for 100, 200, and 400 nJ, and 75 fs for 800 nJ. The lower energy optimized pulses with
less initial chirp are close to Jacobi shaped, while the two higher energy pulses with more chirp
can more closely approach the ideal parabolic form, as in the main text discussion of the Jacobi
pulse. If we were to further increase the initial chirp, spectral broadening would decrease, and
the system would become more like a standard chirped pulse amplifier. If instead we maintain
broadening and use large mode area fibers and pulse width scaling, a compact laser architecture
producing µJ pulse energies at sub 100 fs pulses can be envisaged. With further compression in
hollow core fibers [2], it will be possible to generate sub 10 fs pulses with high pulse quality in a
compact form factor.

Fig. S3. Left: optimized injected pulse shape for nonlinear compression in 4 cm of fiber for 100,
200, 400 and 800 nJ. Right: compressed pulse forms after nonlinear propagation through 4 cm
of fiber and linear pulse compression with a dispersive element. The dispersion of the chirped
mirrors is increased proportionally to the pulse energy.

3. EXPERIMENTAL DETAILS

The laser system is illustrated in Fig. S4. The femtosecond comb oscillator (IMRA America, Inc.
Ecomb 100T) outputs a spectrum centred around 1565 nm with FWHM of 54 nm. The stretched
seed is first preamplified in backwards, core pumped Er fiber (iXBlue, 5 µm mode-field diameter)
by 1 W at 976 nm. The main amplifier (Fibercore, 11 µm mode-field diameter) is backwards,
cladding pumped by up to 36 W at 976 nm. The 100 MHz comb oscillator includes an additional
core-pumped preamp. Most of the system is polarization maintaining (PM) except for the non-PM
power amplifier and the filter and pump combiner attached to it.

Unlike a standard femtosecond fiber laser, the flexibility from pulse shaping means the par-
ticular fiber types and lengths are not very important here. The main requirements are: enough
bandwidth to fill the stretcher and make use of the power amplifier gain bandwidth; the power
amplifier core should not be small to avoid strong nonlinearity; and the pulse out of the fiber
should be roughly compressed at low power.

The stretcher and compressor FBGs are the same design used in opposite directions (Teraxion),
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reflecting from 1540 to 1580 nm with dispersion of 10 ps/nm. The stretcher reflects the long
wavelength side first. We estimate a stretched pulse duration of about 140 ps. The chirped mirrors
(Ultrafast Innovations) have group delay dispersion of -460 fs2, and third order dispersion of
-2800 fs3 per bounce, which is similar to linear transmission through 2 cm of PM1550 fiber. We
used 8 bounces total, and the specified reflection is >99.9%. The actual total transmission was
97% including beam clipping.

Fig. S4. Schematic of the laser system.

A. Spectral phase
Spectral phases for the short pulses at the three pulses energies discussed in the text are plotted
in Fig. S5. Offset and linear slopes were manually subtracted. These adjustments were not
propagated back into the temporal reconstructions plotted in the main text, which retain the
automatic corrections of the commercial software. As expected for an SPM dominated process,
the spectral wings have relatively clean phase, with significant structure in the centre where
different spectral contributions interfere.

Fig. S5. Wrapped spectral phases of short pulses at the three pulse energies. The phase sign
may be inverted from SHG FROG ambiguity. The spectral wings have similar phase, while the
centre region is less clean.

B. Frequency comb
For the carrier envelope offset (CEO) frequency measurement, a small sample of the amplified 100
MHz free space beam was coupled back into a standard fiber f-2f interferometer. The spectrum
was broadened in highly nonlinear fiber, the 2200 nm component was frequency doubled in
periodically poled lithium niobate to 1100 nm, and the two 1100 nm beams interfere to generate
the f-2f beat note. This beat note can then be stabilized by feedback to the CEO actuators of the
oscillator.

An example of such a locked beat is plotted in orange on the left panel of Fig. S6, referenced to
the peak of the carrier frequency. This is a measure of the lock quality, the less power out of the
carrier, the better the lock. This is often converted to an integrated phase noise, shown in blue,
with a value of about 0.3 rad integrated from 3 MHz to 1 Hz, indicating good lock quality.

The centre panel shows a similar measurement, but for a beat note between a sample of the
amplified comb with a stable continuous wave reference laser. In this case, the beat note is
stabilized using the repetition rate actuators of the oscillator. This beat frequency can also be
well locked, with an integrated phase noise below 0.2 rad. These low phase noises verify that the
amplified beam can be used as a frequency comb.
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Fig. S6. Measured beat frequencies (orange) of in-loop locking signals of the f-2f signal locked
by oscillator CEO actuators, or a CW reference beating with a comb line locked by repetition
rate actuators. Conversion of the beat note to integrated phase noise (blue) is also shown, with
values well below 1 radian, verifying good lock quality. This shows that the nonlinear ampli-
fication does not badly scramble the phase, and that the amplifier can generate high power
frequency combs at 100 MHz repetition rate. The right plot uses an optical frequency shifter for
a CEO value of -10 kHz.

Conventional f-2f interferometry stabilizes the CEO frequency at a MHz-level value due to the
1/f nature of electronic noise. For carrier envelope stable applications, we modified the standard
f-2f arrangement as shown in Fig. S7. Spatially splitting the f and 2f beams allows the insertion of
an acousto-optic frequency shifter. For zero or small CEO frequencies, the beat note will be near
the 230 MHz shifting value, allowing for standard electronic locking at MHz frequencies. We
were also able to lock this shifted beat note with similar integrated phase noise, enabling locking
of CEO at and near zero frequency. An example for CEO of -10 kHz is plotted in the right of Fig.
S6.

Fig. S7. Schematic of f-2f interferometer with frequency shifter. By shifting the optical fre-
quency of one arm and locking near the shifting frequency, the carrier envelope offset can be
locked to small frequencies at and near zero.
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