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1. OAM IN SPATIOTEMPORAL PULSES

Throughout the paper, paraxial approximation and the slowly varying envelop approximation
are assumed and the polarization of the pulses are assumed to be homogeneous. This allows us
to describe the optical pulse using its envelope E(x, y, z, t) which is a complex scalar. The real
fields are given by Er = Re(Eeiω0t−k0z). Here k0 = ω0/c. The total angular momentum of the
pulse is given by [1]:

L =
1

µ0c2

∫
r× (E× B)d3r (S1)

and can be decomposed into the spin part:

Lspin =
1

µ0c2

∫
E×Ad3r (S2)

and the orbital angular momentum part:

LOAM =
1

µ0c2

∫ 3

∑
j=1

Ej(r×∇)Ajd
3r (S3)

This gives the gauge independent spin and OAM of electromagnetic wave if Coulomb gauge is
chosen in Eq. (S2, S3) [2]. For quasi-monochromatic wave, we can simplify the calculation by
using the complex envelope, and note that E = −iω0 A. This gives the following expression:

LOAM =
1

2µ0c2ω0

∫
Re[E∗r× (i∇+ k0ẑ)E]d3r (S4)

The second term can be regarded as external OAM that arises from the center of mass motion of
the pulse. We neglect its contribution in all following calculations. Devide this by the energy U
contained in the pulse U = ε0

2
∫

Re(E∗E)d3r, and note that the OAM operator r× i∇ is Hermitian,
we get the following expression for OAM per photon in the pulse:

LOAM
U

=
h̄

h̄ω0

∫
E∗(r× i∇)Ed3r∫

E∗Ed3r
(S5)

We now consider the OAM of a general pulse with nodal line in real space time. We consider a
pulse that has the following envelope at a given time:

E(x, y, z) = (Fxx + Fyy + Fzz)exp
(
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4

)
(S6)

Here Fx,y,z are arbitrary complex coefficients. Using Eq (S5), we can calculate the OAM per photon
of the pulse. The results are:
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Fig. S1. Demonstration of general transmission nodal line in photonic crystal slab
transmission. (a) Schematic of structure (yellow), and incidence pulse (red arrow).
The structure has ε = 12 and the unit cell is composed of two cubes with x, y, z di-
mensions (0.4a, 0.8a, 0.28a), (0.2a, 0.8a, 0.32a), with the second cube center displaced
by (−0.1a, 0.1a, 0.3a) relative to the first one. (b) Transmission amplitude on the
ky = 0 plane. The crosses denote the position of zero on ω − kx plane for ky =
(−0.009,−0.007,−0.005,−0.003,−0.001, 0.0, 0.001, 0.003, 0.005, 0.007, 0.009)× 2π/a. (c) Phase of
transmission on the ky = 0 plane.

This leads us to Eq (7) of the main text. We also see that when the pulse is anisotropic, its OAM
value is not quantized, also the direction of its OAM is not the same as the direction of the nodal
line.

In the numerical calculation of OAM, the profile in (x, y, t) space is obtained from transmission
coefficients. To transform this into the (x, y, z) space, we note that for short propagation distances
near the focus (both temporally and spatially), diffraction can be neglected. We simply replace ct
with −z to get the pulse profile in real space [3].

Using the pulse profile, we numerically calculate the OAM of the pulse using Eq. (S5). We also
calculate the extrinsic OAM by calculating the center of mass motion induced contribution to
OAM, and subtract them in the final result of OAM. This helps to get a stable value of OAM, since
even for small distortion of the pulse the extrinsic OAM can already have a large contribution
compared with the intrinsic one.

2. GENERAL EXISTENCE OF TRANSMISSION NODAL LINE

Here we consider a photonic crystal slab without any symmetry in its unit cell. The structure is
shown in Fig. S1a. We calculate its transmission coefficient for y polarized input light. The output
polarization is chosen such that cross-polarization condition is satisfied for normal incidence at a
specific frequency. This give rise to t = 0 at kx = 0 at this chosen frequency. The transmission
coefficient in the ky = 0 plane is plotted in Fig. S1b for amplitude and S1c for phase. We see this
zero has an associated winding around it. For each ky 6= 0, we can still find a point of zero in
transmission in the ω− ky plane and we indicate their positions by ’x’s in Fig. S1b. We therefore
see the existence of a nodal line does not depend on any symmetry in the photonic crystal slab,
and here its direction also does not follow any particular high symmetry direction.

3. GRATING WITH Z MIRROR SYMMETRY

Fig. S2a shows the cross section of the grating structure. To understand that the transmission
nodal line is pinned on the ky = 0 plane, we show the coupled mode theory model in Fig. S2b.
akx and a−kx guided resonances of the slab that are odd in y and couples to four plane wave ports
S1,2,3,4. These plane waves are all polarized in y. In particular, S1+ and S3+ couples to akx , and akx

radiates out into S2− and S4−. a−kx couples to the remaining plane wave modes in a similar way.
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In coupled mode theory, all coupling coefficients d1, d2, d3, d4 are equal due to mirror symmetry
along z and reciprocity. Therefore the coupled mode theory equations have the mirror symmetry
along x. Thus the nodal line is symmetric in kx. For the transmission vortex around the nodal
line, there is no symmetry here to guarantee the vortex to be isotropic. For an arbitrarily chosen
structure within symmetry constraint, Fig. S2c-f shows a highly anisotropic vortex around the
nodal line.

Fig. S2. Transmission coefficient of y polarized input, LCP output for the structure in Fig. 4a.
(a) The grating cross section has dimensions w1 = 0.4a, w2 = 0.2a, h1 = 0.6a, h2 = 0.2a. (b)
Coupled mode model for the photonic crystal slab. S1,2,3,4 are four plane wave ports, with +
denoting input and − denoting output of the resonances. akx and a−kx are guided resonances
at positive and negative kx. d1,2,3,4 are coupling coefficients of the guided resonances to corre-
sponding ports. They are all equal in this case. (c) amplitude and (d) phase of the transmission
coefficient on ky = 0 plane. The nodal line lies on this plane. (e) amplitude and (f) phase of the
transmission coefficient on kx = 0 plane.

4. OPTIMIZATION METHOD

In this work, we used optimization method to get a design that has reasonably good performance.
We use an autograd implementation of RCWA to simulate the structure and get the gradient with
respect to pixel value in the design region [4]. The objective function is defined as follows:

∑
j
|(tj,simeiδ − tj,obj) · wj|2 (S10)

Here j represents different sample points in (kx, ky, ω) space, tj,sim and tj,obj represent the simu-
lated and desired transmission function at a particular sample point. δ is a phase factor obtained
by equalizing the phase of tj,sim and tj,obj at a particular sample point. This alleviates the need for
choosing a suitable reference plane. wj are the weights for each sample point, chosen to be 1 on
the kx = 0 plane and 2.5 along the nodal line.

The initial condition for the dielectric permittivity distribution is chosen to be coherent noise
[5], which is benefitial for generating low Q resonances in the photonic crystal slab. The objective
function in the transmission is chosen as:

t(kx = 0, ky, ω) =
6ky − 65i(ω− 0.64)√

1 + (6ky)2 + [65(ω− 0.64)]2
(S11)

t(kx, ky = 0, ω = 0.64 + 1.0k2
x) = 0 (S12)

The wavevectors are in units of 2π/a, and angular frequency in units of 2πc/a. The sampling
region is 0.635 < ω < 0.645, |ky| < 0.05, |kx| < 0.06. The specific choice is due to the existence of
a vortex structure near ω = 0.64 in the initial structure. The function parameters could change
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for different initializations. We use the method of moving asymptote [6] implemented in NLopt
[7] to optimize the permittivity distribution. Binarization is obtained by using an activation
function in translating the pixel values to actual permittivity values. Running the optimization
algorithm repeatedly with steeper activation function eventually gives a near binarized structure.
Despite the optimization algorithm is used, several trials and hand tuning are still needed to get
a reasonably performing device.
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