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1. METHODS

A. Imaging System
The imaging system, waveguide coupling and formation of illumination modes are outlined
in Figure S1. The imaging system is based on an upright Olympus microscope, modified to
accept a four-camera system for either simultaneous multi-channel imaging, or fast multiplexed
imaging. The illumination system is a custom configuration made of mostly commercially
available components, but with some parts designed and fabricated in-house. A list of components
is included in Table S1.

Imaging Module The collection module is based on an upright Olympus microscope. It has been
modified by replacing the tube lens and adding a set of four cameras. The excitation light is
filtered out using a quad band emission filter. After the tube lens, the image beam is split into
four using dichroic mirrors. The images are then digitized using compact and low cost industrial
cameras. Adjustable length mechanical adapters make sure each camera is focused correctly.

Illumination and Modulation During image acquisition, the photonic chip is securely mounted
using a vacuum chuck. A linear stage is used to move the photonic chip relative to the coupling
objective allowing selection of a desired waveguide. The waveguide is excited by directly
focusing a laser onto the input facet with a long working distance objective. Coupling efficiency
is optimized by precisely aligning the excitation beam with the input of a waveguide along two
axes using a flexure stage.

A mirror on the galvanometer allows for changing the input angle of the laser beam, the
focused beam can then be scanned across the field of view of the coupling objective along the
input facet of the waveguide. Fast settling time of the galvanometer (800 µs) allows for switching
the illumination pattern in the waveguide without significantly compromising acquisition rate.

System Control and User Interface High level control and user interface for the system is provided
through a custom LabVIEW application. Timing critical parts of the system, such as laser
modulation and galvanometer position update are handled using trigger signals from the cameras,
and a custom DAQ board monitoring these signals and updating the galvo position by means of
a control voltage.

B. Waveguide fabrication
A 250 nm thick Ta2O5 film was deposited using a magnetron sputtering system on Si substrate
with 2.5 µm thick SiO2 bottom cladding layer. The base pressure of the deposition chamber was
evacuated up to 1 · 10−6 Torr, with sputtering gases being argon and oxygen (Ar:O2 flow ratios
of 20 SCCM: 5 SCCM). Substrate heating was applied to maintain a substrate temperature of
200°C throughout the deposition time [1][2]. The waveguide fabrication process was carried
out using a conventional optical projection lithography method. First, 1 µm thick positive resist
(Shipley S1813) is coated on top of a 250 nm Ta2O5 film and then prebaked at 90°C in the oven
for a half-hour. Then, the wafer was mounted at the mask aligner (MA6), which illuminated
the photoresist with the waveguide pattern on the mask. The masking process was optimized
for the transparent wafer by varying the exposure time and development time (developed in
Shipley MF319). Ion beam etching of the Ta2O5 layer using argon gas was done to fabricate
the waveguide. The etching was performed in the ion beam system (Ionfab 300+ from Oxford
Instrument) using an argon gas flow rate of 6 SSCM. The process pressure (2.3 · 10−4 Torr), beam
voltage (500 V), beam current (100 mA), RF power (500 W), and substrate temperature (15°C)
were kept constant. The etch rate goes down by reducing the crystal period. In the ion beam
milling process, the substrate was placed at an angle of 45 degrees with respect to the incident ion
beam to achieve low sidewall roughness. Finally, wafers are placed in a 3-zone semiconductor
furnace at 600°C in an oxygen environment for 3 hours to reduce the stress and supplement the
oxygen deficiency created in Ta2O5 during the fabrication process.

C. Sample preparation
The keratocytes were obtained from scales harvested from farmed Atlantic salmon. The fish were
killed by a blow on the head which is allowed according to Norwegian Regulations for use of
animals in experimentation (https://lovdata.no/dokument/SF/forskrift/2015-06-18-761#KAPITTEL_
10). This method is also in compliance with corresponding EU legislation - Directive 2010/63/EU
(http://data.europa.eu/eli/dir/2010/63/oj). The scales were placed on ethanol cleaned photonic chips
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Fig. S1. Chip imaging system with galvo mode scanning. (a) Acquisition system: a: xy stage,
b: coupling alignment stage, c: adaptor plate, d: fiber collimator, e: custom mount, f: galvo, g:
coupling objective, h: linear stage, i: vacuum chuck, j: collection objective, k: upright micro-
scope, l: tube lens, m: dichroic mirror mounts, n: cameras. (b) Overview of waveguide cou-
pling, mode scanning and the formation of different TIRF illumination pattern from waveguide
mode interference. (c) An illustration of image acquisition protocol for minimum distance of
probing input facet (∆x) and scan start location x0, a deinterleaving parameter d for acquiring
fewer frames, a stack offset parameter n. These notations are also used in supplementary note
2. Frame number is represented using k, which also indexes the probing points in the corre-
sponding image stack.
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Ref. Description Manufacturer part number

a Sample positioning stage Standa 8MTF-75LS05

b Coupling alignment stage Thorlabs MAX381/M

c Mechanical adapter plates Custom -

d Fiber collimator Thorlabs F280FC-A

e Mount for collimator, galvo and cou-
pling objective

Custom -

f Galvonometer with mirror Cambridge tech. 6210H

x Driver for Galvanometer Cambridge tech. 671

x DAC-board and timing controller Custom -

g Coupling objective 50x0.5NA Olympus LMPLFLN50x

h Waveguide selection stage Standa 8MT30-50

i Vacuum chuck for chip mounting Custom -

j Collection objective Nikon MRH07120

k Microscope body:

-Focusing mount Olympus BXFM

-Illuminator module Olympus BX3M-RLA-S

-Objective turret Olympus U-5RE-2

x Camera port dovetail adapter Thorlabs LCPY2

x SM30 to SM2 adapter Thorlabs SM2A12

x SM2 to M30x0.5 adapter Thorlabs SM2A20

l Tube lens Thorlabs ITL200

x SM2 lens tube Thorlabs SM2M05

x SM2 to SM1 adapter Thorlabs SM2A6

x SM1 lens tubes Thorlabs 3x SM1T2

m Filter holders Thorlabs 1x DFM1_M

Thorlabs 2x DFM1L_M

n Cameras Daheng imaging 4x MER-502-
79U3M

x Focusing adapters Thorlabs 4x SM1ZM

x SM1 to C-mount adapters Thorlabs 4x SM1A39

Table S1. Components of the imaging system. The letters in the ‘Ref.’ column refer to the let-
ters in Figure S1a. Further, the letter ‘x’ denotes the components not directly shown in Figure
S1a.
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combined with a polydimethylsiloxane (PDMS) camber of height ≈ 0.5 cm and volume ≈ 1 mL
(see Figure 1c). For the scales to attach to the waveguide surface, they were left to dry for about 2
min before adding antibiotic antimycotic buffer solution (Hank’s Balanced Salt Solution (HBSS,
Corning, #21-023-CM) with 100 IU/mL Penicillin (Alfa Aesar), 100 µg/mL Streptomycin (VWR)
(P/S) and 1 µg/mL Amphotericin B (PanReac AppliChem, #A7009. The cells were kept at 4°C in
an air tight box, replacing the old solution with fresh medium every 2-3 days. After day 4, the
cells were kept in Leibovitz’s L-15 medium (Gibco) with P/S.The cells and scales were fixed on
chip (11 days after harvesting) in freshly thawed paraformaldehyde (4% in phosphate buffered
saline (PBS)) for 1.5 hours. The cells were permeabilized using 0.1% trypsin for 4 min and washed
using PBS before F-actin labelling using phalloidin-ATTO647N (ATTO-TEC) in a dilution from
stock 3:100 in PBS for 1 hour while kept protected from light and at room temperature. The
cells were washed in PBS and kept in the HBSS antibiotic antimycotic buffer solution in a sealed
container in the fridge until imaging.

D. Image acquisition
Different waveguide illumination patterns were used to illuminate the sample by moving the
excitation spot along the input facet of the waveguide as outlined in section S1.1. The illumination
and image acquisition were synchronized such that the camera would start its exposure when
the galvo mirror was stationary, and the laser would be turned on only while exposing. This
approach was chosen to create a high contrast between the mode patterns captured in different
image frames and to minimize photobleaching.

The acquisition time per frame is the sum of the camera exposure and readout time, plus the
time of mode switching, of which the latter one is negligible compared to the former ones for our
implementation with galvo scanning. In effect, the imaging rate is primarily determined by the
camera technology and the fluorophore brightness.

In the experiments presented in the main article, the modes of a 600 µm wide waveguide
were excited using a 650 nm laser of power 150 mW. The distance between each coupling point
along the input facet for each consecutive frame was 400 nm. The fluorescence images were
collected through a 670 nm longpass emission filter. The choice of laser coupling step size and
exposure times were made from a compromise on getting a high enough number of frames with
a sufficient signal-to-noise ratio without deteriorating the image quality from photobleaching too
much towards the end of the time sequence.

E. Data analysis
Image visualization, analysis and processing were conducted using Fiji [3] with ImageJ 1.53c. The
MUSICAL image reconstructions were accomplished using an implementation of MUSICAL for
Python, with the following parameters: 5 subpixels, lambda 660 nm, and alpha 2. The threshold
was picked automatically using the work presented in [4]. More details are described in 5.

Resolution estimation based on decorrelation analysis were performed using the ImageJ plu-
gin from [5] with default settings. SSIM calculations were performed using MATLAB (The
MathWorks, Inc.,version R2020a) calculating the SSIM from [6].

2. MATHEMATICAL DERIVATION OF CHIP-BASED MUSICAL AND MEASUREMENT
OPTIMALITY

This section contains the mathematical analysis needed for optimizing the illumination design
for chip-based MUSICAL. It is broken into the following sub-sections: description of the design
problem needed for identifying the optimal measurement setup, description of the imaging
model, the criteria designed for identifying the optimal illumination approach (and consequently
the measurement approach), the protocol for designing the optimal measurement strategy for a
waveguide prior to bioimaging, and lastly the resolution limit derived from the mathematical
analysis. The complete list of notations are listed in Table S2.

A. The design problem
We first define the design problem related to the illumination approach. The input facet of a
multimodal waveguide is a wide facet, and when using a focused laser beam, only a small width
of the facet is sampled. Let the position of the center of the beam spot on the input facet with
respect to the left edge of the waveguide facet be denoted as x. The beam is scanned over the
input facet, and each illumination point (also called illumination probe) introduces a particular
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Notation Meaning

Indices

p Pixel number for pixels in camera. The pixels in 2D camera
space may be numbered or indexed linearly using, for
example, raster scan. There may be a separate look-up
table for converting the 2D pixel coordinates into p.

m Pixel number for pixels in a super-resolved (SR) grid in the
sample space. The pixels in the 2D plane illuminated by
TIRF (z-axis neglected as small due to evanescent waves)
may be numbered of indexed linearly using, for example,
raster scan. There may be a separate look-up table for
converting the 2D SR pixel coordinates into m.

k Frame number. This corresponds also to (a) the time coor-
dinate as t = k/F and the probing location x on the input
facet of the waveguide.

q The index representing a propagating mode in the waveg-
uide.

Imaging setup related

∆x The smallest scan step for the input facet of the waveguide
used for designing the optimal measurement strategy.

F The rate of image acquisition of the camera. In the case of
the illumination engineering system used in this article, it
is also the rate of switching of the scanning point on the
input facet of the waveguide.

t The time at which an image is taken.

x0 The left edge of the waveguide (or a small practical offset
point) which serves as the reference for the input facet
scanning by the illumination spot.

x The distance between x0 and the illumination beam’s spot
(also referred to as illumination probe)

d It is an integer, referred to as the ‘deinterleaving parame-
ter’ that represents the distance between two consecutive
positions of the illumination probes. Thus, if xk and xk+1
represent two consecutive positions, then xk+1− xk = d∆x

n It is an integer referred to as the ‘offset parameter’. It
indicates the offset from the x0 in terms of ∆x for a given
input facet scan. Therefore xk is completely specified as
xk = x0 + (n− 1)∆x + (k− 1)d∆x.

Table S2. Description of symbols and notations. Note: Table continued on the next page.
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Notation Meaning

Physical quantities of interest, and related matrices if used

Ip,k and I Intensity at camera pixel p in the kth frame. Matrix I
contains Ip,k such that one row corresponds to a pixel and
one column corresponds to a frame.

Gp,m and G The point spread function mapping that maps the fluo-
roscent emissions at an SR pixel m in the sample space to
a camera pixel p.

Lm,k and L Illumination intensity at SR pixel m in the sample region
during the kth frame.

Lm,q Evanescent field intensity of qth propagating mode at the
SR pixel m in the sample region. These intensities are
normalized in the sense that the maximum electric field
amplitude is 1.

ak,q The coefficient of the qth propagating mode that indicates
the strength of mode in the illumination pattern in the kth
frame.

f Spatial frequency (magnitude) in the Fourier domain

fmax The maximum spatial frequency of the propagating modes
in the waveguide, which corresponds also to the maximum
spatial frequency supported in the illumination patterns
generated by the chip-based microscope

fobj The bandwidth of the optical transfer function of the col-
lection system comprising of the conventional objective
lens system.

Statistical quantities defined for analysis

V(p, n, d) The variance of intensity I(p, k) across the frames (i.e. ∀k)
at a given pixel p when an imaging setup characterized by
a particular combination of n and d is employed.

A(p, n, d) The average of intensity I(p, k) across the frames (i.e. ∀k)
at a given pixel p when an imaging setup characterized by
a particular combination of n and d is employed.

C(d, k) For a given frame k and the deinterleaving parameter d,
the spatial correlation between the kth frame I(p, k) and
its adjacent frame I(p, k + 1).

Table S2(contd.) : Description of symbols and notations
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combination of the waveguide modes supported by the waveguide. Among these combinations,
the excited modes propagate for long distances and produce evanescent fields at different regions
of interest (ROIs) along the length of the waveguide. Therefore, by varying x, one can create
illumination fluctuations in the ROIs which are to be exploited for super-resolution. Hence, the
design of the optimal measurement approach corresponds to identification of a suitable set of
illumination probing points {x}. The criteria of suitability will be derived later in this section.

From experimental practicality, we consider the constraint that the illumination facet can be
probed in regular intervals via some form of scanning mechanism (employing e.g. piezo stage
or galvo scanner) with the minimum scan distance between two consecutive probes being ∆x.
In other words, the input facet can be scanned in discrete multiples of ∆x. Let the starting point
of the scan be given by x0, which is close to the left edge of the input facet. The starting point
need not be particularly known as long as it is practically close to the facet edge, enabling the
entire waveguide facet to be scanned. Then, the illumination probing distances can be specified
as xk = x0 + (n− 1)∆x + (k− 1)d∆x, where d relates to the physical scan distance as d∆x and n
relates to additional offset from the starting point creating the possibility of scanning starting at
multiple locations. Therefore, the design parameters are n and d. We further incorporate in our
design a choice of d such that the sensitivity of n is low, such that the offset from the left edge
is not a factor of concern. In essence, our design parameter is d or d∆x for a given waveguide,
illumination wavelength, and illumination probing setup.

In the experimental results presented in section 3.2 of the main manuscript, we start with an
oversampled stack with ∆x = 400 nm and d = 1 acquired at NA 0.3. In order to study the
optimal stack size (i.e. number of illumination points) and sensitivity to the starting point, we
create different stacks using different values of d and n ∈ [1, d]. However, if the stacks were
created using optimal selection of d, the number of actual measurements would be significantly
smaller. As noted in section 3.2, when we use d = 5, the structural similarity and resolution of
MUSICAL images match well with the reference d = 1. In this case, d = 5, i.e. sampling distance
d∆x = 2000nm between two consecutive frames is a good experimental design.

B. The imaging model and the role of illumination
Consider a set of photostable emitters (fluorescent molecules) that have negligibly small standard
deviation in the number of photons emitted over time. Let their average photoemission constant
be e photons per unit illumination per frame. This assumption is made so that the analysis can
focus on the fluctuations arising solely from variations in the illumination resulting from scanning
the excitation laser along the input facet of the multimodal waveguide. Further, let us consider a
hypothetical and sufficiently fine, super-resolved (SR) grid in the sample region. It is represented
in the sample through the number of emitters E(m) in the mth pixel. The SR sample grid is
significantly finer than the diffraction limit as well as at least two times smaller than the smallest
feature of interest. Let the point spread function that maps the photons emitted at an SR pixel
m in the sample to the pth camera pixel be G(p, m). Let the illumination pattern in the sample
region in the kth frame be L(m, k). Then, the intensity image on the camera is given by:

I(p, k) = ∑
m

eG(p, m)E(m)L(m, k) (S1)

In these notations, the following assumptions are made. The notation t denotes a particular
frame number during which the camera sensor is exposed for a time ∆t. The illumination
L(m, k) is the sum of all illumination profiles delivered during the exposure of the camera. If the
illumination point on the input facet is stationary during the image acquisition (such as used
in this article), this consideration does not apply since the illumination is constant during the
exposure time. However, the consideration applies when a continuous scan of the input facet is
employed instead of discrete jumps characterized by ∆x. We assume that the exposure time of
the camera is large enough (> milliseconds), such that the photons’ emitter-camera travel time is
negligible. The observed intensity at a pixel p in a frame k indicates the total number of photons
collected in the pixel region of the pth pixel during the exposure of the camera in that frame.

Relegating the measurements into matrix notations, eq. (S1) can be expressed as:

I = eGEL (S2)

where the (p, k)th element of I corresponds to I(p, k), the (p, m)th element of G corresponds to
G(p, m), the (m, k)th element of L corresponds to L(m, k), and E is a diagonal matrix in which the
mth element contains E(m).
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MUSICAL involves eigenanalysis of J = IIT, which can be written as

J = IIT = GELLTETGT. (S3)

Therefore, the illumination variation achieved in the waveguides contributes to MUSICAL
through the mathematical support of LLT. The (m1, m2)th element of the matrix LLT, being
denoted as l(m1, m2) for the ease of further reference, is specified as

l(m1, m2) = ∑
k

L(m1, k)L(m2, k) (S4)

This means that each element consists of correlation in time with lag zero but for different points
in the sample space. The exceptions are the diagonal elements, as they represent autocorrelation
in time at a given point in the sample space. For these cases, the diagonal elements comprise the
illumination’s second order temporal raw moment (explained below).

C. Criteria of optimal measurements for waveguide based illumination engineering
We first consider the diagonal elements, which correspond to the second order temporal raw
moment of illumination at a given point. Mathematically, this term is the sum of the temporal
variance and the square of the average signal strength of the illumination for each point in the
sample space independently. In order to achieve a diagonal dominant matrix, it is important to
have high variance as well as high signal strength across all the points in the sample space. In
order to assess this property over all the sample points in a ROI, we can first compute the temporal
variance and average signal strength at each individual point, and then form a histogram each for
the distribution of variance and signal strength over all the points.

Then the optimality in the sense of temporal variance is given by the input facet sampling distance
such that the median value of the spatial distribution of the temporal variance is large but the spread of the
distribution is small.

Similarly, the optimality in the sense of temporal average intensity is given by the input facet sampling
distance such that the median value of the spatial distribution of this average intensity is large but the
spread of the distribution is small.

Furthermore, the rank of the matrix LLT is quite insightful. It indicates the number of inde-
pendent illumination patterns in L. The number of electromagnetic modes inside the waveguide
is finite, say Q, even though it might be difficult in practice to determine the value of Q. As a
consequence of the finite value of Q, there is a bound to the rank of this matrix irrespective of
how fine sampling is taken on the waveguide input facet. Therefore, while one may think that
sampling the input facet with a very small step size between two consecutive frames provides
the best measurement strategy if photobleaching of the fluorophores is not a problem, this is
actually not the case. In fact, taking very many such measurements provide (a) different linear
combinations of the same waveguide modes, and (b) generate independent noise patterns for
every single measurement. Therefore, taking too many such measurements with small facet size
does not increase the cardinality of illumination patterns but does increase the sampling of noise.
This in turn leads to noisier eigenimages and therefore also to a poorer image reconstruction. On
the other hand, using too few sampling points also leads to a rank below the maximum number
of modes supported by the waveguide.

Therefore, the optimal number of measurements is such that taking a higher number of measurements
does not alter the rank of LLT, while fewer measurements surely and systematically reduces the rank.

An alternative way of assessing the optimal number of measurements is described next. Con-
sider two consecutive frames that are acquired by two consecutive samplings of the input facet.
If the sampling points are too close, they will result in similar or highly correlated illumination
patterns. If the difference between the illumination patterns across a chosen ROI is comparable to
the noise, then the two patterns do not necessarily provide exploitable information. An eigenvalue
decomposition of a matrix L comprising of just these two illumination patterns results in one
significant eigenvalue associated with an eigenvector which is proportional to the average of the
two illumination and the other eigenvalue is comparable to noise. In essence, the rank of the
matrix is 1 for this noisy scenario even though two illumination patterns were used. On the other
hand, as the distance between the consecutive input facet sampling points increases, the illumina-
tion patterns from such points become less correlated, providing more exploitable information.
As the distance between the sampling points increases, the eigenvalue decomposition results in
more and more prominent value of the second eigenvector, contributing to full rankedness of
such matrix.
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In other words, the optimal sampling distance between the input facet is such that the correlation between
two consecutive measurements decreases when the distance is further increased and increases consistently
when the distance is decreased.

This alternate approach for assessing the optimal sampling distance is more computationally
efficient than assessing the ranks for all combinations of d and n, as required for the previously
described optimization procedure.

D. Strategy for identifying the optimal illumination approach
In order to identify the optimal illumination approach prior to bioimaging, we performed some
measurements as outlined next and processed the acquired data stacks using the criteria discussed
in the previous subsection and outlined more explicitly in this section as a procedure or protocol.

Acquiring images of illumination patterns under uniform sample conditions and over-sampling of the input
facet Since the illumination strategy needs to be designed a priori and irrespective of the sample,
we consider uniform sample conditions for this process. This may be achieved in waveguide-
based systems through one of the following two strategies: (a) Form a thin and uniform monolayer
of fluorophores using standard protocols such as in [], or (b) autofluorescence spectrum of
waveguide material may be exploited to image the illumination at the autofluorescence peak.
The second strategy is more suited for the conventional homogeneous waveguide materials,
but is useful only if the excitation frequency of the fluorophores of interest generates sufficient
autofluorescence in the waveguide material. On the other hand, the fluorophores of interest can
be directly used for the characterization by the former strategy if uniform layers can be created
effectively on the waveguide surface.

Beside this, the normal microscopy setup for chip-based imaging such as described in Suppl.
section 1A or other multimodal waveguide-based imaging setups described elsewhere [7] may be
used. The only condition is that the same setup is used for applying MUSICAL on actual samples
later. The waveguide input facet may be illuminated using optics such as described in the main
paper with the only condition that as fine sampling of the input facet as possible (i.e. ∆x) is used
and one illumination pattern is imaged for one sampling.

Data analysis to determine the optimal d We first define the quantities that need to be computed
using the stack described above for determining dopt.

Consider a pair of images I(p, k) and I(p, k + 1). There can be K − d such image pairs for a
given value of d, where K is the maximum number of frames when ∆x is used for sampling the
input facet. Let the spatial correlation between each pair be denoted as C(d, k).

Also, let a stack with deinterleaving d, and offset n be defined as I(n, d) that contains the image
frames starting at frame number n and sampled every d frames thereafter for the experimental
stack measured using the aforementioned experiment. Let V(p, n, d) represent the variance of
intensity across the frames and A(p, n, d) represent the average intensity across the frames.

Based on the analyses presented in section C, we outline the criteria that imply a good mea-
surement strategy for waveguide-based illumination engineering for MUSICAL.

• The univariate histogram of V(p, n, d) with respect to d is computed. In the optimal case,
the median of such distribution is high but the spread is small.

• The univariate histogram of A(p, n, d) with respect to d is computed. In the optimal case,
the median of such distribution is high but the spread is small.

• The univariate histogram of C(d, k) with respect to d is computed. In the optimal case, the
median of such a distribution is small.

We note that the above analysis is easily generalizable to include images acquired over many
ROIs, and the conclusions on dopt can be derived through the above mentioned histograms
by including evidences over multiple ROIs in the same histograms. The above criteria are
described qualitatively and also used for illustration purposes in the following sub-sections. We
recommend the above qualitative measures as more intuitive and amenable to human-based
heuristics. Nonetheless, one is free to compute the medians and standard deviations of V(p, n, d),
A(p, n, d), C(d, k) as functions of d for more quantitatively rigorous and automated conclusions.
This aspect and also design of other single valued functions using a combination of the above
mentioned histograms are out of the scope of the current work.
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E. Resolution limit and relationship with the spatial frequencies supported by the waveguide
The wide-field resolution of chip-based TIRFM and the potential of super-resolution through both
single molecule localization and fluctuations based techniques have already been investigated
[7–9]. At the same time, resolution and reconstruction quality of MUSICAL have also been studied
previously [10, 11]. The scope of utilizing the chip-based illumination for super-resolution using
MUSICAL is new and the focus of the current article.

In the above discussion, so far, we have discussed the optimality of the distance between
consecutive sampling points of the waveguide input facet. Here, we discuss how the spatial
frequency support of the waveguide illumination patterns in the eigenvalue decomposition
contributes to resolution. Let the electromagnetic modes in the waveguides be represented
as L(m, q), q ∈ 1, Q, and each characterizing one spatial frequency. Let the coefficients of the
linear combinations of these modes be denoted as a(k, q) such that L(m, k) = ∑Q

q=1 a(k, q)L(q, m).
Therefore eq. (S4) can be rewritten as

l(m1, m2) = ∑
k

Q

∑
q1=1

Q

∑
q2=1

a(q1, k)a(q2, k)L(q1, m1)L(q2, m2)

This indicates that the maximum spatial frequency support of the eigenimages derived using
J defined in eq. (S3) is given by the multiplications of all of the spatial frequency components
supported by the waveguide with each other. In the frequency domain, this corresponds to
the convolutions of all frequency components with each other. Therefore, if the maximum
spatial frequency in the waveguide has magnitude kmax, then the maximum frequency of LLT

is 2kmax. Further, multiplication with the G on either side in the definition of J defined in eq.
(S3) contributes additional 2kobj where kobj is the maximum frequency supported by the optical
transfer function of the collection objective. This results in the net resolution limit of MUSICAL
for waveguide based illumination engineering to be determined by 2(kmax + kobj).

F. Resolution in the context of structured illumination approaches, including blind and speckle
illuminations

There is a certain degree of overlap between the structured illumination approaches with random
or pseudo-random illuminations patterns [12–14] and the proposed chip-based MUSICAL. It is
notable that the resolution of the proposed photonic-chip based nanoscope is limited in the sense
of the hardware through the numerical apertures of the illumination and collection, similar to
other structured illumination systems [7, 15].

However, we clarify an important difference with respect to the illumination numerical aperture
between conventional optics-based systems versus chip-based imaging systems. We note that
the objective lens used for coupling the light into the waveguide does not determine the spatial
frequency support or the effective numerical aperture contributed by the waveguide-based
illumination, as also discussed in detail in earlier works [15]. In the waveguide-based illumination
system, the numerical aperture is indicated indirectly by the effective refractive index of the
waveguide modes supported by the waveguide. Simulations provide an effective refractive index
range from 1.9329 to 1.9317 for transverse electric polarization or 1.8469 to 1.8457 for transverse
magnetic polarization at the geometry utilized for this work [7].

It is also interesting to consider the differences between MUSICAL and blind SIM given that
both MUSICAL and blind SIM involve correlations. In blind SIM [13] and related algorithms,
the sample’s image is correlated with the illumination pattern, i.e. pattern-image correlation is
performed. In MUSICAL, images taken under different illumination patterns are correlated, and
therefore indirectly different illumination patterns are cross-correlated. We note that the pattern-
image correlation, in the ideal case support the spectral span corresponding to 2killum + kobj. On
the other hand, the cross-correlation of illumination patterns, such as indirectly performed in
MUSICAL, supports spectral span corresponding to 2(killum + kobj). This is a direct consequence
of the mathematical formulation presented in [16] although only fluctuations from photokinetics
is considered there.

3. CROSS-CORRELATION OF ILLUMINATION PATTERNS

In this section we discuss the cross-correlation between frames located at different positions in
time. The objective of this comparison is to analyse the difference between frames and the random
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Fig. S2. Pearson’s cross-correlation across 6000 frames for every pair of frames. The horizontal
and vertical axes display the frame number.

The diagonal is full of ones as the correlation of a frame by itself is one. The inset shows a
magnified-view of the top left corner of 10 by 10 frames.

patterns generated by light reflection in the chip. We captured the patterns by measuring images
of the autofluorescence at discrete positions and measured the similarity between every pair of
frames by obtaining the Pearson correlation coefficient between frames. The coefficient for frame
number f1 and f2 where the operator 〈·〉 represents the mean of values in the vector is defined as
follows:

Cp( f1, f2) =
〈(I:, f1

− 〈I:, f1
〉)(I:, f2 − 〈I:, f2 〉)〉√

〈(I:, f1
− 〈I:, f1

〉)2〉
√
〈(I:, f2 − 〈I:, f2 〉)2〉

(S5)

To represent a column or row we use the colon sign (:) to indicate that the whole column or
raw is considered. For instance I:,1 corresponds to the first column, while I1,: is the first row.

When the correlation for every pair is obtained, they can be ordered in the correlation matrix,
which is shown in Fig. S2 for the frames taken at NA 0.3 (6000 frames). As expected, the image is
symmetrical since it contains every pair of frames twice, with the maximum value located across
the main diagonal as it shows the correlation of each frame by itself. Due to the symmetry of the
correlation matrix, we can analyse only half of the values in this similarity matrix.

Our interest lies in the off-diagonals as they represent different deinterleaving distances, starting
from zero in the main diagonal. From this representation, it is also clear that for larger values of
deinterleaving, fewer samples are available as the diagonals contain less pairs. Then, to make
them comparable, we obtained the normalized histogram using a fixed number of bins (100) for
each deinterleaving (or each off-diagonal) and collect them all in a single image as columns. The
results are shown in Fig S3, where we added two curves. The mean curve is computed by getting
the weighted mean of the histogram (continuous line), while the maximum is just the maximum
value of each histogram.

From the plot, we observe that correlation decreases as the distance increases, reaching a
plateau at around 20 frames for both of the 0.3 NA and 1.0 Na case. It is also interesting to observe
that for the higher resolution case (i.e. 1.0 NA), the cross-correlation goes closer to zero, as can
be clearly seen from Fig S3c. Therefore, we conclude that using an deinterleaving of 20 frames
would be enough for breaking the correlation between patterns.

A. Analysis of the mean and variance across multiple substacks
In this section, we compare the fluctuation properties captured in the mode pattern images
acquired using the 0.3 NA and 1.0 NA objectives. We performed this analysis by getting V and A
as defined in Section 2.F of this supplementary document for multiple substacks of the original
image I that depend on the deinterleaving d and also in the offset n as:

I(n,d) = I:,n::d (S6)
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Fig. S3. Histogram of cross-correlation at different deinterleaving (measured as number of
frames), with lines based on mean (weighted) and maximum values for each deinterleaving
(across each column). The distance is measured in units of frames. Since each frame corre-
sponds to a single position of the laser and the step size is 100 nm, this allows to easily convert
frames to physical distance. a. NA 0.3 with 10x. b. NA 1.0 with 60x. c Mean curves only.

The double colon :: is used to indicate a sequence of values starting at n with a step of d (n,
n + d, n + 2d,etc.). With this expression, we defined the following terms:

V(p, n, d) = 〈(I(n,d)
p,: − 〈I

(n,d)
p,: 〉)(I

(n,d)
p,: − 〈I

(n,d)
p,: 〉)〉 (S7)

A(p, n, d) = 〈I(n,d)
p,: 〉 (S8)

From these expressions we get the ratio R(p, n, d) = V(p, n, d)/A(p, n, d) to observe variations
in the fluctuations for every case. This expression allows to characterize every pixel at single
stack in terms of its intensity values, which is normalized by the mean intensity in the stack. We
note that instead of variance to mean ratio, standard deviation to mean ratio could have been
used and would lead to similar interpretations. Since the interpretations are similar, we have
chosen to present only variance to mean ratio.

As a result, for every choice of deinterleaving d we can obtain a distribution of R as there exist
several substacks for each value. An important problem is that as the number d increases, so
does it the number of substacks available (with each of them containing less frames as the total
number of frames is limited).

To increase the number of samples, we extracted 10 small patches of 100 by 100 pixels from
the original autofluorescence acquisition. The results can be visualized as living in a three-
dimensional array whose axis correspond to d, substack index n, and pixel position p. Then, we
compute R as an element-wise ratio and then compress the result to be represented as a function
of d. Finally, we present the results in Figure S4 which shows the histogram across every value of
d. In addition, we have added a line with the mean of the curve in red with an envelope showing
the standard deviation for each d.

In this figure, it is possible to observe a change in the histograms and curves for deinterleaving
values above 20 frames. For values below that, the standard deviation (blue curve) varies slowly
suggesting that the variation of R (and therefore the variance across pixel intensities) does not
change considerably in the range between 1 and 20. This represents the effect of picking different
values of offset n. A large spread indicates large sensitivity to the offset, and vice versa. As
d increases, indeed the number of candidate values for n increases, and indeed some amount
of sensitivity to the value of n is expected. However, the fact that the spread becomes almost
constant after a certain value of d indicates robustness to the value of n and therefore less critical
need of controlling the offset during an experiment.
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Fig. S4. Histogram of variance over mean with lines indicating the mean and standard devia-
tion.a. NA 0.3 with 10x. b. NA 1.0 with 60x.

B. Interpretation of eigenimages in each pixel window
MUSICAL is based on the decomposition of small sub-sections into what is referred to as the
eigenimages in related literature. In the original MUSICAL, where widefield illumination and a
blinking behavior rooted in the fluorophores’ photokinetics is expected, these eigenimages contain
the most prominent spatial structures in the sample. Later, these are divided into two subsets
called the signal subset and the noise subset depending on their statistical significance measured
through their respective eigenvalues. On this new application of the MUSICAL algorithm, the
fluorescence fluctuations is attributed largely to the illumination patterns generated in the chip.
Therefore, in this new scheme, the eigenimages contain the different illumination modes (which
encode the structural information) and the division into signal and noise subspaces is equivalent
to selecting which modes represent statistically prominent illumination patterns within the pixel
sub-window and which do not. This may be interpreted also as selecting fewer modes than pixels,
namely the most relevant ones for super-resolution.

4. FOURIER ANALYSIS OF ILLUMINATION PATTERNS

The relevant waveguide mode patterns for this study, can in general be described as lines. While
the patterns are random, due to the geometry of the waveguide and excitation laser, these tend to
be horizontal or deviating with only a small angle compared to the waveguide optical axis. We
applied a Fast Fourier transform to each frame in the stack in order to observe this effect. As the
lines’ position can be modulated by the phase in the Fourier domain, we are interested only in
comparing the magnitudes. The results of the mean Fourier magnitude are shown in Figure S5.

The circular distribution shows that the illumination covers frequencies in both the horizon-
tal and vertical axes. However, the strong vertical line indicates that the patterns are indeed
emphasised in the horizontal direction. As both directions are not equalized, it is likely that
resolution-limited structures along the vertical axis are better resolved than the ones along the
horizontal axis.

14



Fig. S5. Fourier transform of illumination patters in logarithmic scale.a. Mean magnitude of
FFT, 2D view at 1.0 NA. b. Mean magnitude of FFT, 3D view at 1.0 NA

5. MUSICAL THRESHOLD SELECTION

The most difficult parameter to choose—and a potential source of subjectivity— for the MUSICAL
reconstruction is the threshold parameter. This determines which fluctuations are regarded as
signal and which are regarded as noise or background fluctuations.

To overcome this challenge, various automatic thresholding schemes were developed by Acuña
et al. in [4] and tested on both simulated and real microscopy data, but only for the case of
homogeneous illumination and epifluorescence data. Here, we tested the different automatic
thresholding schemes for the inhomogeneous multimodal waveguide (TIRF) illumination. We
used the same deinterleaved image stacks as presented in the main article.

We found that for all cases of deinterleaving, the soft thresholding scheme MUS-S gave a
satisfactory and the best performance compared to the other thresholding schemes. The recon-
structions were in accordance with the 1.0 NA ground truth reference, low to no appearance of
reconstruction artifacts and with an intensity scaling appearing in accordance with the actual
sample brightness. The reconstruction procedures MUS-A, MUS-B and EV-B were seen to reject
too many sample details for all cases of deinterleaving. The eigenvalue-scaled methods EV-A
and EV-S appeared blurry and with a high presence of reconstruction artifacts for small stack
sizes. Similar results as for the 0.3 NA data were also achieved for the 1.0 NA data, although the
ground truth is not available for these images. The results for the 0.3 NA data are summarized in
Figure S6.

6. EXTREME FOVS SUPER-RESOLUTION MICROSCOPY

For application scientists to efficiently harvest the advantages of the huge super-resolved areas
provided by chip-based MUSICAL, the MUSICAL image computation must also be within reach
of normal computers, e.g., via the open-source ImageJ plugin MusiJ [17]. Below we consider a
practical scenario based on the reconstruction displayed in Figure S7.

Assuming that the image coming from a microscope is stored using 16 bits and with a grid of
sensors of 2048 by 2048 elements, then each frame has a size of 8 MB. This means that a stack of
1500 frames requires approximately 12 GB in memory which is already larger than the common
computer configuration of 8 GB. This can be solved partially by using ImageJ’s virtual stacks
where the images are not stored completely in the RAM but on the hard drive (disk resident).
However, MusiJ requires the complete image stack to be loaded into the RAM in order to split the
data across different processors in a way compatible with the MUSICAL computation. Moreover,
we observed heap memory issues while processing larger datasets, obstructing the attainment of a
best-quality MUSICAL image (processing all the available information) via the MusiJ plugin. We
found the deinterleaved reconstruction strategy as a simple and elegant solution to this bottleneck
of computational resources, namely a method for reconstructing all the available information
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Fig. S6. Selection of MUSICAL thresholding method. The images show results from comput-
ing the MUSICAL images for different thresholding methods (by Acuña et al. [4]) on the 0.3
NA data as above. MUS-A and MUS-B are according to the original MUSICAL algorithm’s
hard thresholding scheme, while MUS-S and EV-S are modified MUSICALs employing auto-
matic soft thresholding schemes. The EV-methods scale the contribution of every eigenimage
(both signal and noise) by the inverse of their respective eigenvalues. On the other hand, the
soft methods do not separate the noise and signal explicitly. They weigh every eigenimage
both as signal and noise using two complementary functions that map eigenvalues to a real
value in the range [0,1]. These functions are defined in terms of the highest and lowest second
eigenvalue in the stack. For these particular c-TIRFM data, the soft thresholding method MUS-
S proved the best for all deinterleaved stack sizes and data acquired via both the 0.3 NA and
the 1.0 NA objectives.
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which was also greatly sped-up compared to the previously applied "all-frames simultaneous"
reconstruction strategy.

Figure S7 is an example of a large MUSICAL image resulting from such a deinterleaved process-
ing with d=10, meaning a reduction of 10 times the required memory for processing. In terms of
size, this sample contains originally 1500 frames of 2448 by 2048 pixels and requires approximately
14 GB in memory, impossible to process using MusiJ and standard laptop configurations. The
deinterleaved stack of 150 frames (1.4 GB) on the other hand, is possible to process. Hence, the
deinterleaved reconstruction approach with sum of sub-stack MUSICAL images outlined in the
main manuscript, enables the obtainment of larger MUSICAL images of superior quality than
what would have been obtainable without the deinterleaved approach.

The MUSICAL computations presented in this work were achieved via a Python implementa-
tion of MUS-S [4]. The computer used was equipped with an Intel Xeon Gold 5118 processor with
12 cores and 128 GB DDR4 memory. For this configuration (and splitting the task into 8 parallel
processes), the particular processing of the large FOV displayed in Figure S7 took 12 min 44 s
for 150 frames, and 23 min 32 s for 1500 frames. Thus, the main advantage of the deinterleaved
reconstruction approach is not saving reconstruction time (although this greatly depends on
the particular hardware and software implementation), but to enable the computations to be
performed on more memory-restricted systems.

7. COMPARISON OF MUSICAL-ON-CHIP WITH BSOFI AND SRRF

Although the multimodal chip illumination is expected to cause reconstruction artifact for other
fluctuation imaging methods than MUSICAL, we have for completeness included a comparison
of the MUSCIAL results with the corresponding SRRF and bSOFI images in Figure S8.

8. LIVE-CELL IMAGING

As the photonic chips are bio-compatible, the gentle TIRF illumination can also be exploited for
live-cell imaging of a great variety of cell types. Figure S9 demonstrates imaging (conventional and
MUSICAL) of actin in living cardiomyoblasts (labelled using SiR-Actin). The color coded panel
(projection of three MUSICAL images at different time-points) highlights minute cytoskeletal
changes over time. The optimization for high-speed super-resolution imaging of living cells is
the scope of future work.
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Fig. S7. Super-resolution microscopy over extreme fields of view. The upper panel show the
same keratocyte sample and area as in Figure 2a, but instead of computing the mean of modes
for a conventional TIRF image, the resolution is enhanced by computing the MUSICAL image.
To speed-up and ease the computational burden, the SUM of 10 MUSICAL images from the
deinterleaved image stack (d=10) was used instead of all frames simultaneously. The super-
resolved area is 507 000 µm2 ≈ 0.51 mm2 (here limited vertically by the 600 µm wide waveg-
uide, and horizontally by the camera FOV, about 845 µm). The color coded ROIs indicated in
the upper panel are displayed magnified below. The large super-resolved image area is ideal
for capturing the great variety of morphological features exhibited by keratocyte skin cells such
as their extruding pseudopods.
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Fig. S8. Comparison of bSOFI, SRRF and MUSICAL. The ROIs indicated in the upper row
are displayed magnified below. As expected from the theoretical considerations presented in
this work, MUSICAL achieves a far better image reconstruction using the chip illumination
than bSOFI and SRRF. This can be seen from the comparison with the ground truth image
(panel d), especially clearly where indicated by the arrows. The bSOFI, MUSICAL and Ground
truth (sum) images were generated using 1499 frames. The SRRF image was generated using
1400 frames (The software could not reconstruct 1499), Temporal radiality auto-correlation of
order 2, radius 0.5 and other default parameters. The bottom row scale bars are 3 µm.
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