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Dynamic coherent diffractive imaging with a 
physics-driven untrained learning method: 
supplemental document
Network architecture
The Deep CDI network architecture is shown in Fig. 1 and convolutional blocks detailed in 
Fig. S1.

Fig. S1 (a) Single convolutional layer (b) Double convolutional layer. ReLU: rectified linear unit. BN: batch 
normalization

Single convolutional layer: 2D Convolution with kernel size = 1 and stride = 1.
Double convolutional layer: 2D Convolution with kernel size = 3, stride = 1 and padding = 1.
Max pooling: 2D MaxPool kernel size = 2.
Transposed convolution: 2D ConvTranspose with kernel size = 2 and stride = 2.

Diffraction data of static optical experiment
The diffraction data at corresponding position in Fig. 6a are shown in Supplementary Fig. 2. 
The diffraction data are saved as standard TIFF file with a resolution of 512×512 and a pixel 
depth of 8 bits per pixel.

Fig. S2 The static optical experiment diffraction data at corresponding position.

Sample preparation
Small intestine section. In our static experiment, the small intestine section slide is purchased 
from Saiensi Co. Ltd. Zhejiang (Province) China (Item No.65).
The live rotifer. In our dynamic experiment, the live rotifer were cultured in purified water 
with chlorella at 20℃ for 8h of light a day. A tripette (2.5 μl) is used to transfer the live rotifer 
from culture medium to a glass coverslip for imaging.



Generalization performance of Deep CDI by trained with a single diffraction pattern

The usage of networks in Deep CDI is different from that of the conventional end-to-end 
approach. In the end-to-end approach, the network is supposed to represent a universal function 
that maps the data in the object space into the image space, which is achieved by training with 
a large amount of labeled data. In Deep CDI, it is the interplay between the physical constraints 
and the network that allows the complex field to be reconstructed. The first physical constraint 
- support region constraint is independent of input data, while the second physical constraint - 
free propagation constraint at the detector plane relates to the input diffraction measurement 
itself. Therefore, the network trained by one diffraction measurement cannot be used to directly 
predict output from another different measurement.

To illustrate this, we trained two Deep CDI models, L-model and H-model, by using the LFW-
face data and the Hela cell image, respectively, with the same hyper-parameters and physical 
parameters. And then, the trained L-model is used to predict the Hela cell, while the trained H-
model is used to predict the LFW-face data. The results are presented in Fig. S3. One can clearly 
see from Fig. S3 (d, e) and (k, l) that both trained models fail to predict the amplitude and phase 
information from another measurement, as we expected. When dealing with different 
measurements, the network needs to be retrained or trained from scratch.

Generalization performance of Deep CDI on a time series of diffraction patterns

For a dynamic process, we have demonstrated that the time-consuming reconstruction can be 
shortened by employing an initial training step with only a fraction of measurements. A large 
number of measurements is not involved in the training step and is directly used to predict the 
corresponding outputs. Therefore, for these measurements, it is interesting to compare the 
reconstruction quality of the trained network (dynamic training) to the one achieved when the 
network is trained with each one of these frames separately (single diffraction pattern training). 

In this section, we analyzed the effect of the two training strategies on the quality of 
reconstruction images. Three diffraction patterns at different time points, i.e., t = 1s, t = 30s, t 
= 60s, are selected as examples to examine the performance. For the single diffraction pattern 
training, the network is trained from scratch using each of the three diffraction patterns 
separately. For the dynamic training, the results are directly obtained by inputting the 
diffraction patterns into the trained network in Section 3.3. The reconstruction results by these 
two strategies are shown in Fig. S4. These two methods are almost the same on the visual 
effects. As no ground truth can be provided here, we directly compare the similarity of the 
reconstruction results from the two strategies using SSIM. The SSIM index values of the 
reconstruction amplitudes between the two methods are 0.9810, 0.9817, and 0.9818 for Fig S4 
(a1, a2), (b1, b2) and (c1, c2), respectively. The SSIM index values of the reconstruction phases 
between the two methods are 0.9823, 0.9818, and 0.9827. Therefore, the performance of the 
dynamic training strategy is satisfying.



Fig. S3 Generalization performance of Deep CDI by trained with single diffraction pattern. (a, f) the diffraction 
patterns. (b, c) and (i, j) are the ground truth of a and f, respectively. (d, e) are the reconstruction results by H-model 

from diffraction pattern f. (k, l) are the reconstruction results by L-model from diffraction pattern a.



Fig. S4 Comparison of single diffraction pattern training and dynamic training. (a, b, c) are the diffraction patterns at 
different time points. (a1, b1, c1) and (a2, b2, c2) are the reconstruction results by single diffraction training and 

dynamic training, respectively


