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1. INTRODUCTION

This document contains supplementary derivations and additional documentation on experi-
ments en simulations.

2. TRANSMITTANCE OF A 2D TINY FILTER USING AN ANGULAR SPECTRUM AP-
PROACH

In this section the transmittance of a pixel-integrated (tiny) filter is calculated using an angular
spectrum approach. The derivation in this chapter is original work but inspired on a derivation
for the flux transfer of a wave-packet [1, p.70], also used for small-spot illumination calculations.

The novelty in this supplementary document is to limit the domain of integration to the size of
the pixel which requires non-trivial modifications for practical computation. We will concern
ourselves only with the tangential components of the field amplitudes as only these components
contribute to flux transfer.

But first, for completeness of notation, the thin-film transfer-matrix is briefly introduced in Section
A.

A. Thin-film transfer-matrix method for plane waves
For the case of plane-wave illumination on an infinitely wide filter there exists the well-known
transfer-matrix method to calculate the transmittance [1, 2]. As conventional in the thin-film filter
literature, we only consider the (complex-valued) electrical and magnetic field components that
are parallel (tangential) to the thin-film filter surface, as only these components contribute to flux
transfer across the interface [2].

For plane waves, we have that the tangential electrical field E and the magnetic fieldH are related
as H = ηE, where η [AV−1] is the characteristic admittance of the medium. For the tangential



components, by construction, the characteristic admittance depends on the polarization and can
be calculated as

η =


1

χ0µr

n
cos θn

p-polarized (TM)

1
χ0µr

n cos θn s-polarized (TE)

, (S1)

with χ0 =
√

µ0/ε0 = 2.6544× 10−3 S defined as the admittance of free space [2] and θn the angle
of refraction in the film, calculated using Snell’s law. For optical frequencies µr ≈ 1 [2]. The
polarization-dependent cosines are a direct consequence of mapping the actual field amplitudes
onto the axis tangential to the material interface.

For multi-layer filters, one can define an equivalent admittance at each material interface, called
the complex surface admittance Yj = Hj/Ej which can be calculated using the recurrence relation

Yj−1 =
Yj cos δj − iηj sin δj

cos δj − i
Yj

ηj
sin δj

, for j = N, . . . , 0, (S2)

with Y0 being the surface admittance of the whole filter stack [1, p.123]. As there is no backward
propagating wave in the substrate, YN−1 = ηN , which can be used to initiate the recursion. Here,
δi =

2πnihi cos(θi)
λ corresponds to the phase thickness of each layer.

In [1, p.126] it is then derived that for a thin-film filter stack, the transmission coefficient for the
tangential components becomes

t =
1 + r

∏
p
j=1(cos δj − i Yj

ηj
sin δj)

, with r =
η0 −Yj

η0 + Yj
, (S3)

which is constructed so that the transmitted plane wave in the substrate has an amplitude
Et = tEin.

B. Tiny filter transmittance
The transmittance of a tiny filter is approximated as a small-spot illumination problem with a
finite domain of integration on the bottom to include the finite size of the pixel. Because the
number of generated electrons in the photodiode is proportional to the irradiance, the total
pixel response effectively corresponds to an incoherent summation of the different parts of the
outcoming wave front.

For a plane wave, a simple expression exists for the irradiance such that

I = Re(η)
1
2
EE . (S4)

For a wave packet, which consists of a distribution of plane waves, it is tempting to calculate the
flux by summing up the irradiances for each plane wave in the decomposition. However, this
approach would ignore the fact that the plane waves interfere.

In contrast, the irradiance of an arbitrary wave is calculated as

I(x) =
Re(EH)

2
, (S5)

which is the amplitude of the Poynting vector perpendicular to the material interface.

The total flux across the tiny filter is then obtained by integrating over the filter area:

Φ =
∫ w/2

−w/2
I(x)dx. (S6)

Since the incoming wave is a plane wave, we can substitute Eq. (S4) such that the incident flux
equals

Φin =
ηinw

2
, (S7)
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a calculation which is not possible for the transmitted wave-packet.

To solve Eq. (S6) for a wave packet we make use of two identities. First, for an arbitrary wave
packet consisting of plane waves, we can write

E(x) =
∫ ∞

−∞
A(ν)ei(2πνx)dν, (S8)

and
H(x) =

∫ ∞

−∞
B(ν′)ei(2πν′x) dν′ . (S9)

Second, for each plane wave, the magnetic field is related by the admittance η to the electrical field
as B(ν′) = η(ν′)A(ν′). The admittance is polarization and angle-dependent, and hence different
for each plane wave in the decomposition. Its angle-dependency is encoded by its dependency
on the spatial frequency ν′.

So we have that
H(x) =

∫ ∞

−∞
η(ν′)A(ν′)ei(2πν′x) dν′ , (S10)

which after substitution in Eq. (S6) gives

Φ =
1
2

Re
(∫

ν

∫
ν′

dνdν′A(ν)η(ν′)A(ν′)
∫ w/2

−w/2
dxe2iπ(ν′−ν)x

)
. (S11)

To speed up numerical integration and reduce required memory, several identities are used to
reduce the number of integrals. First, we notice that the inner integral is a Fourier transform and
solve it exactly so that

Φ =
1
2

Re
(∫

ν

∫
ν′

dνdν′A(ν)η(ν′)A(ν′)
sin(π(ν′ − ν)w)

π(ν′ − ν)

)
,

=
1
2

Re
(∫

ν′
dν′η(ν′)A(ν′)

∫
ν

dνA(ν)
sin(π(ν′ − ν)w)

π(ν′ − ν)

)
. (S12)

Second, the new inner integral is in fact a convolution integral such that we can write

Φ =
1
2

Re
(∫

ν′
dν′η(ν′)A(ν′)(A ∗ K)(ν′)

)
, (S13)

with

K(ν′) =
sin(πν′w)

πν′
, (S14)

which I refer to as the “pixel kernel” in the software implementations. When necessary, the
convolution can be computed efficiently in O(n log n) time using a Fast-Fourier Transform (FFT).

The transmitted flux becomes

Φt =
1
2

Re
(∫

ν′
dν′ηt(ν

′)At(ν
′)(At ∗ K)(ν′)

)
. (S15)

We can limit the integration domain to the incident wave between ±90◦ incidence such that the
limits of the domain are

ν = ± 1
λ

. (S16)

Finally, we have that the transmittance of a tiny filter equals

T(λ; θ) =
Φt

Φin
. (S17)
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3. DIFFERENCE BETWEEN TINY FILTER AND INFINITE FILTER WITH FINITE COL-
LECTION AREA

In this section it is shown the size of the collection area, i.e. pixel, is irrelevant for an infinite filter.
This demonstrates an important qualitative difference between a finite filter and infinite filters.

For an infinite filter, the incident field is a plane wave:

Ein(x) = e2πix sin θ/λ︸ ︷︷ ︸
Plane wave

, (S18)

with an angular spectrum

Ain(ν) =
∫ +∞

−∞
Ein(x)e−i(2πνx)dx = δ

(
ν− sin θ

λ

)
, (S19)

such that the transmitted field equals

At(ν) =t(ν)Ain(ν), (S20a)

with t the transmission coefficient obtained using the transfer matrix method (see Eq. (S3)).

The flux transmitted through a finite area for an arbitrary angular spectrum equals (see Eq. (S11))

Φt =
1
2

∫
ν

∫
ν′

dνdν′At(ν)ηt(ν
′)At(ν

′)
∫ w/2

−w/2
dxe2iπ(ν′−ν)x, (S21)

and the incident flux equals

Φin =
1
2

∫
ν

∫
ν′

dνdν′Ain(ν)ηin(ν
′)Ain(ν

′)
∫ w/2

−w/2
dxe2iπ(ν′−ν)x. (S22)

Substituting Eq. (S19) into the flux formula and using the sampling property of the Dirac delta
distribution, we obtain

Φin =
1
2

ηin(νθ)
∫ w/2

−w/2
dx e2iπ(νθ−νθ)x︸ ︷︷ ︸

=1

,

=
1
2

ηin(νθ)w,

(S23)

with νθ =
sin θ

λ
.

Equivalently, we obtain for the transmitted flux that

Φt =
1
2

ηt(νθ)wt(νθ)t(νθ). (S24)

So finally, if we calculate the effective transmittance for an infinite filter with a finite collection
area we obtain

T =
Φt

Φin
=

ηt(νθ)

ηin(νθ)
t(νθ)t(νθ) = T∞ (S25)

which corresponds to the definition of transmittance for a regular infinite filter (for real values of
η) [1, p.132].

A possible intuitive explanation goes as follows. A Fabry-Perot filter requires light beams in the
cavity to reflect many times and interfere with other parts of the beam in cavity. This essentially
corresponds to a converging summation of a mathematical series [3]. For an infinitely wide filter
with a finite collection area, although the collection area is finite, there remain an infinite number
interfering contributions that arrive from outside of the collection area by traveling through the
infinitely wide cavity. Hence, the series still converges. In contrast, for a tiny filter, while the
collection area is equally large, there is no supply of interfering beams coming from outside this
area and hence the sum is truncated, causing a deterioration of filter quality. In future work it
would be interesting to further formalize this, for example, using the approach presented in [3].
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4. RELATIONSHIP BETWEEN NORMALIZED FWHM AND MIRROR REFLECTANCE

A key property of the equivalent monolayer model is that its response is fully determined by two
dimensionless factors, the effective refractive index neff and the reflectance R of the mirrors. In
this section it is shown that the mirror reflectance determines the filter bandwidth normalized by
its central wavelength. I present my own derivation because I believe it to more explicit about the
assumptions than the derivations I found in reference works like [4, p.365] and [2, p.185].

Let us consider the transmittance for an infinitely wide filter of unit peak value so that

Tpeak =
(1− R)2

R2 − 2R cos(2δ) + 1
. (S26)

The goal is to find the phase thickness for which the peak transmittance is halved (equals 1/2).
Solving to δ we obtain

δ1/2 =
1
2

arccos
(

2− R
2
− 1

2R

)
. (S27)

To find the FWHM, we need to derive how a change in phase-thickness translates to a change in
wavelength. The phase thickness is non-linearly related to the wavelength as

δ =
2πneffheff

λ
=

πλcwl
λ

, (S28)

which can be differentiated such that

dδ = −πλcwl
λ2 dλ . (S29)

In the neighborhood of the central wavelength λ = λcwl this gives

dδ = −π dλ

λcwl
. (S30)

Assuming this equation holds for well for small enough finite ranges, we have that for ∆δ =
|2δ1/2|,

∆δ ≈ π
FWHM

λcwl
= πΛ∞ (S31)

with
Λ∞ =

FWHM
λcwl

. (S32)

the normalized bandwidth of the corresponding infinitely wide filter at normal incidence.

After substitution, we obtain the expression for the normalized filter bandwidth

Λ∞ ≈ 1
π

arccos
(

2− R
2
− 1

2R

)
, (S33a)

∼ 1− R
π
√

R
, for R→ 1, (S33b)

∼ 1− R
π

, for R→ 1, (S33c)

which can also be solved to R such that

R = 2− cos(πΛ∞)−
√

3− 4 cos(πΛ∞) + cos2(Λ∞π),

∼ 1− πΛ∞, for Λ∞ → 0.
(S34)

While this approximation is very good for narrowband filters, the analysis is simpler in the
wavenumber domain because the wavenumber and phase thickness are linearly related. Hence
no approximation is required to relate the wavenumber-FWHM to the mirror reflectance so that

δ =
πk

kcwl
⇒ ∆δ = π

∆k
kcwl

, (S35)
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and
∆k

kcwl
=

1
π

arccos
(

2− R
2
− 1

2R

)
. (S36)

In this work I opted to work in the wavelength domain because it is most familiar to the target
audience.

5. ADDITIONAL DETAILS FOR THE NUMERICAL FDFD SIMULATION

The wave-optics method is validated by solving Maxwell’s equations using a finite-difference
frequency-domain (FDFD) Matlab Toolbox [5]. The frequency domain toolbox, used with a
direct solver, is used for two reasons. First, we are only interested in the harmonic regime and
hence time steps are not required. Second, the toolbox is very convenient for define rectangular
structures like thin-film filters.

Three different Fabry-Pérot filters are placed adjacently as in Fig. S1. Each filter has a standard
all-dielectric Fabry-Perot design [2]:

Air|H(LH)b|Lc|(HL)b H|Substrate, (S37)

where each layer is a quarter-wave plate for a chosen wavelength and LH indicates a layer of low
and then high refractive index. The exponent in (LH)b indicates this pattern is repeated b times.
The three designs are

Left : Air|H(LH)4L1L(HL)4H|Substrate

Central : Air|H(LH)4LL(HL)4H|Substrate

Right : Air|H(LH)4L3L(HL)4H|Substrate

(S38)

Where L and H are quarter-wave layers for a central wavelength around λcwl = 720 nm. By
construction, this means that the dielectric mirror has a central wavelength around 720 nm. The
material parameters that were used are nair = 1, nl = 1.5, nh = 2.4, and nsub = 3.67.

The central wavelength of the filter can be chosen by varying the cavity thickness. By choosing
layers L1 and L3 to be 50 nm thinner and thicker than L respectively we obtain central wavelengths
for the left, central, and right filter of 664 nm, 720 nm, and 776 nm respectively. These were chosen
to be far enough such that there is no spectral overlap and cross-talk can be, supposedly, ignored.

The grid size is 6 nm and the perfectly matched layers (PML) are 100 nm on each border. In
addition, an s-polarized plane wave source is placed above the filters. The simulation domain is
visualized in Fig. S1.

To ensure realistic boundary conditions only the the transmittance of the central filter is calculated.
The incident flux is calculated in the absence of any filter and substrate. The transmitted power
is calculated by integrating the the power flux across the width of the filter. Depth-dependent
absorption in the pixel is not modeled as this work focuses on calculating how much light is
transmitted to the pixel, not modeling its quantum efficiency.

The script for this simulation is available as Supplemental Code 1.

Fig. S1. FDFD simulation domain with three adjacent Fabry-Pérot filters on a single substrate.
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6. CONTRIBUTION OF DIFFRACTION AT NORMAL INCIDENCE

The goal of this section is to estimate for which filter widths the diffraction effect at normal
incidence becomes negligible. This requires us to define what “large” means given that the
drop in peak transmittance will depend on multiple factors: the central wavelength λcwl, the
normalized bandwidth Λ∞, the effective refractive index neff, and the filter width w.

The strategy is to find a dimensionless parameter α which fully characterizes the peak drop S(α)
and which is a function of all relevant system parameters so that

peakvalue(Twave
tiny ) = S(α)peakvalue(T∞). (S39)

This is the drop in peak transmittance due to diffraction in a tiny filter relative to the transmittance
of the transmittance T∞ of an infinite filter (calculated using standard transfer-matrix calculations).

In Section A it is shown that for narrowband filters, i.e., Λ∞ → 0, the peak transmittance is fully
characterized by the dimensionless parameter

α = Λ∞

(
wneff
λcwl

)2
. (S40)

This means that, when plotted as a function of α, an identical drop in peak transmittance S(α) is
observed for a wide range of filter designs (using the equivalent monolayer model). This result is
demonstrated for several filter designs where the peak transmittances are plotted for a sweep of
filter widths between 2 and 20 micron (Fig. S2). In addition, it was empirically found that

S(α) =
Twave

tiny

T∞
=

(
1 +

3
2π2α

)−1
. (S41)

yields a good approximation of the scaling curves in Fig. S2. However, a rigorous asymptotic
analysis would be interesting to perform in future work.

The larger the factor α, the smaller the peak drop caused by diffraction. Intuitively it makes sense
that, the larger the width w is compared to the operating wavelength λcwl, the more negligible the
effect of diffraction. Also, the larger the bandwidth Λ∞, the more robust the filter spectrum for
smoothing. Finally, the larger the effective refractive index neff, the smaller the angular sensitivity.

Thanks to the nondimensionalization, Fig. S2 captures with a single curve the effect of diffraction
for narrowband filters. Hence, to determine for a given filter design what filter width should be
considered small, one can calculate the corresponding α value and read the expected peak drop.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Fig. S2. Scaling S(α) of the peak transmittance for multiple filter designs. All curves are plot as
a function of α at normal incidence.

A. Derivation of the dimensionless parameter for narrowband filters
In this section a derivation is presented to find the dimensionless parameter α used in the previous
section. The derivation relies on the use of the equivalent monolayer model introduced in the
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letter. We start from the transmitted flux integral (Eq. (S12)) which fully determines the shape of
the transmittance. Here we only consider the case of normal incidence, i.e., θ = 0, so that

Φt =
w3

2
Re
(∫

ν

∫
ν′

t(ν)t(ν′)ηt(ν
′)sinc (πwν) sinc

(
πwν′

)
sinc(π(ν′ − ν)w)dνdν′

)
.

(S42)
We shall also assume that in the small spatial frequency range of interest (which corresponds to
small diffraction angles), the characteristic admittance can be considered η constant.

To place all width dependency of the integrand into the transmission functions, we make the
substitutions wπν = u and wπν′ = u′ so that

Φt =
ηt
2

w3Re

∞∫∫
−∞

t
( u

πw

)
t
(

u′

πw

)
sinc(u)sinc(u′)sinc(u′ − u)

dudu′

π2w2

 ,

=
ηt
2

w
π2 Re

∞∫∫
−∞

t
( u

πw

)
t
(

u′

πw

)
sinc(u)sinc(u′)sinc(u′ − u)dudu′


(S43)

Because of this substitution, the value of the integral, and hence also the effect of diffraction,
solely depends on the transmission function t(ν). In what follows we hence only have to examine
the parameters that determine the shape of this transmission function. The derivation builds
on the use of the transmission function of an equivalent monolayer. The facilitates an analysis
in terms of general filter properties like its bandwidth, central wavelengths. The transmission
coefficient of interest is derived in [4, p.362]

t(δ) =
ts(1− R)
1− Rei2δ

, (S44)

and hence

L = t
( u

πw
)
t
(

u′
πw

)
=

Ts(1− R)2

(1− Re−i2δ)(1− Rei2δ′ )
, (S45)

The transmission coefficient ts only scales the integral function and is canceled out when normal-
izing by the infinite filter transmittance and can henceforth be ignored.

While L is a complex function, only its real part Lr = Re(L) (see Eq. (S5)) is important. One finds
that

Lr = (1− R)2 (R2 cos(2(δ− δ′))− R cos(2δ)− R cos(2δ′) + 1)
(R2 − 2R cos(2δ) + 1)(R2 − 2R cos(2δ′) + 1)

∼ (1− R)4

(R2 − 2R cos(2δ) + 1)(R2 − 2R cos(2δ′) + 1)
, for δ, δ′ → π

= l(δ)l(δ′),

(S46)

with

l(δ) =
(1− R)2

R2 − 2R cos(2δ) + 1
, (S47a)

∼ (1− R)2

R2 − 2R(1− 2(δ− π)2) + 1
, δ→ π, (S47b)

=
(1− R)2

(1− R)2 + 4R(δ− π)2 =

(
1− R
2
√

R

)2

(
1− R
2
√

R

)2
+ (δ− π)2

, (S47c)

=

(
πΛ∞

2

)2

(
πΛ∞

2

)2
+ (δ− π)2

, (using Eq. (S33b)), (S47d)

=
1

1 +
u4

π4

(
λ2

cwl
w2n2

effΛ∞

)2 =
1

1 +
u4

π4α2

, (See Section B), (S47e)
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with

α = Λ∞

(
wneff
λcwl

)2
. (S48)

Hence, we have reduced the characterization of the transmittance to a single dimensionless
parameter. When this factor has the same value, the peak transmittance drop, relative to the
infinite filter transmittance, also has to have same value.

B. Approximation of δ as a function of spatial frequency
In this section a useful approximation of the phase thickness δ is derived which is valid for small
spatial frequencies (small angles) in the neighborhood of the main peak at normal incidence.

We start from the standard definition of phase thickness (see Eq. 5 in the main manuscript) so that

δ =
2πneffheff cos(θn)

λ
. (S49)

For small spatial frequencies this can be rewritten as

δ =
2πneffheff cos(θn)

λ
=

2πneffheff

√
1− sin2(θn)

λ
(S50a)

=

2πneffheff

√
1− sin2(θn)

(λ/neff)2 (λ/neff)2

λ
(S50b)

=
2πneffheff

√
1− (νλ/neff)

2

λ
,
(

using ν =
sin(θn)

λ/neff

)
, (S50c)

∼
2πneffheff

(
1− ν2λ2

2n2
eff

)
λ

(S50d)

=

2πneff

heff︷ ︸︸ ︷(
λcwl
2neff

)(
1− ν2λ2

2n2
eff

)
λ

. (S50e)

To obtain the peak drop at the original peak wavelength λcwl, we set λ = λcwl so that

δ ∼
2πneff

(
λcwl
2neff

)(
1− ν2λ2

2n2
eff

)
λ

= π

(
1−

ν2λ2
cwl

2n2
eff

)
. (S51)

Finally, applying the substitution wπν = u, we obtain the desired approximation

δ
( u

πw

)
= π

(
1−

u2λ2
cwl

w2π2n2
eff

)
= π −

u2λ2
cwl

πw2n2
eff

. (S52)

7. ADDITIONAL DETAILS ABOUT THE EXPERIMENTAL SETUP

A. Setup
The experimental setup consists of a monochromator coupled to a collimating lens which illu-
minates the sensor. The setup and its operation is described in [6]. Several components of the
setup were updated but the operational principle remains unchanged. The image sensor board is
placed onto a goniometer to control the incidence angle of the collimated light.

For each angle, this setup measures the spectral response of each pixel in digital numbers. The
device under test is imec’s snapshot 5x5 mosaic camera [7]. On this sensor, 25 filters are integrated
on 5.5 µm wide pixels of a CMV2000 image sensor [8]. The filters are distributed across a
wavelength range of 665 and 975 nm.
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B. Fit at normal incidence
To apply the equivalent monolayer model to the measured data it was necessary to estimate
the normalized bandwidth Λ∞. This is the bandwidth of the filter at normal incidence, if it were
infinitely wide, which is not known in this case. However, using the wave-optics model one can
sweep across multiple bandwidths and use the tiny filter transmittance that best matches the
measurement.

The result of this procedure is displayed for several filters in Fig. S3. The fit is not perfect for each
filter because not each filter has a perfect Lorentzian shape.
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Fig. S3. Fit at normal incidence for several filters on imec’s sensor.
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