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1. TECHNICAL LIMITATIONS

In the main text, we show that we encounter deviations between the encoded and the recon-
structed degree of coherence when we try to achieve very low (approaching 0) or very high
(approaching 1) values. In this section, we provide more details on the origins of these limits.

Let us start investigating the case where we want to obtain mutually incoherent outputs.
According to Eq. (7) in the main text, the linear transformation we want to apply is the identity
matrix, i.e., the inputs should be transmitted to the outputs unaffected. However, since it is
not feasible to control all the modes supported by the scattering medium, the beams get mixed
during the propagation through the medium. The resulting background noise is responsible for
an unwanted contribution of each input field to every output.

We will now quantify the limitations to the minimum degree of coherence imposed by the
background noise. We start considering a coherence matrix Kout of the form

Kout =


1 γ · · · γ

γ 1 · · · γ

...
. . .

. . .
...

γ γ · · · 1

 , (S1)

where, for simplicity, we set the off-diagonal terms to have the same constant real value γ. To have
mutually incoherent output fields, we want γ to tend to 0. From Kout we extract the expression
of the linear transformation T̂ [Eq. (7) in the main text], which connects the mutually incoherent
input fields Ein to the output fields Eout with coherence matrix Kout. From the form we chose
for Kout [Eq. (S1)], the linear transformation T̂ can be completely described by two coefficients:
t11 for the diagonal terms, which are all equal, and t21 for the off-diagonal elements, which are
again all equal. Note that the coefficients t11 and t21 associate the two outputs Eout

1 and Eout
2 with

the single input Ein
1 , according to the relations Eout

1 = t11Ein
1 , and Eout

2 = t21Ein
1 [Eq. (8) in the

main text]. Ideally, we would like |t21| to approach zero to get zero output degree of coherence,
i.e., we want |Eout

2 | = 0. In practice, the background noise in the output intensity pattern poses
a lower bound to the intensity |Eout

2 |2, hence to |t21|, which finally sets the minimum degree of
coherence different from zero. In Fig. S1a, we show the scaling of the absolute value of the ratio
|t21/t11| as a function of the degree of coherence γ. If we increase the number of inputs, i.e., the
dimensionality of Kout, the requirement is very similar (Fig. S1). A desired minimum degree of
coherence translates into a minimum signal-to-noise ratio (SNR). In fact, considering the single
input Ein

1 and assuming that the only contribution to Eout
2 is given by the background noise, |t11|2

is the maximum generated intensity and |t21|2 is the noise intensity, thus the SNR is defined as
|t11|2/|t21|2. In Fig. S1b, we show that low coherence values demand very high SNR, which is
limited by the number of SLM pixels modulating each input laser [1]. A similar argument works
for a different form of Kout, where the limitation is given by the element of the transformation T̂
with the minimum absolute value.

Let us now consider the factors limiting the maximum degree of coherence. To investigate this
case, we turn on a single input (Ein

1 ), and we consider a single pair of output fields Eout
1 and Eout

2 ,
which are related to the input by the coefficients t11 and t21, as discussed above. We compute the
mutual degree of coherence

γ =
〈Eout

1
(
Eout

2
)∗〉√

〈|Eout
1 |2〉〈|E

out
2 |2〉

=
t11t∗21

〈
|Ein

1 |2
〉

|t11t21|
〈
|Ein

1 |2
〉 =

t11t∗21
|t11t21|

, (S2)



(a) (b)

Fig. S1. Minimum degree of coherence limitations. (a) Given two outputs Eout
1 = t11Ein

1 and
Eout

2 = t21Ein
1 , the degree of coherence γ depends on the ratio |t21/t11|. (b) Minimum signal-

to-noise ratio (SNR) needed to encode the degree of coherence γ. In the case that |t21| is only
given by the background noise, the SNR is |t11|2/|t21|2 .

whose modulus |γ| is always equal to 1, regardless the values of the transformation coefficients.
Nevertheless, the measurements deviate from this ideal result. To show it, we use a single input
laser to generate through our system two output beams. We then let the output beams interfere
and we reconstruct the degree of coherence. We report the measured interference patterns for two
different input lasers in Fig. S2a and S2b. The reconstructed degrees of coherence (γ1 = 0.86 for
the first input and γ1 = 0.92 for the second) are lower than the ideal value of 1. This discrepancy,
in line with what is reported in literature, is associated to the limited spatial coherence of the light
source [2]. We show now that the maximum degree of coherence achievable with a single laser
is limiting the value obtainable by the whole system. Let us consider two mutually incoherent
inputs, both of them contributing to two output fields. Since the components from the different
inputs do not interfere, the resulting interference pattern is given by the sum of the individual
patterns. Thus, we can write the visibility in terms of the maximum Imax

1 , Imax
2 and minimum

Imin
1 , Imin

2 intensity given by the contributions from the two different inputs:

V =
(Imax

1 + Imax
2 )− (Imin

1 + Imin
2 )

(Imax
1 + Imax

2 ) + (Imin
1 + Imin

2 )
. (S3)

After few algebraic passages, we get

V =
V1

1 + (Imax
2 +Imin

2 )
(Imax

1 +Imin
1 )

+
V2

1 + (Imax
1 +Imin

1 )

(Imax
2 +Imin

2 )

, (S4)

where Vi = (Imax
i − Imin

i )/(Imax
i + Imin

i ) is the visibility of the interference pattern given by the
ith input. Considering Imax

1 = Imax
2 and Imax

1,2 � Imin
1,2 , we obtain

V ≈ V1 + V2
2

. (S5)

The last equation tells us that the maximum visibility obtainable by the whole system [directly
linked to the degree of coherence, see Eq. (11a) in the main text] is limited by the average visibility
over each single input. Therefore, the maximum degree of coherence achievable is limited by the
spatial coherence of the light sources. Figure S2 shows the interference pattern when we turn
on: (a) only the first input, (b) only the second one, or (c) both of them. The measured degrees
of coherence resulting from the combination of the two inputs (γ12 = 0.89) is in agreement with
Eq. (S5).

2. MUTUAL INCOHERENCE OF THE INPUT FIELDS

Our implementation relies on mutually incoherent inputs. To achieve this condition, we used
three red lasers (Thorlabs HRP050 and Meredith Instruments 633 nm HeNe lasers, and ≈ 650 nm
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Fig. S2. Interference patterns. We have two interfering output fields, resulting from the su-
perposition of two inputs. We show the interference patterns when (a) the first, (b) the second
or (c) both inputs contribute to the outputs. Each case is associated to a measured degree of
coherence γi, where the subscript i indicates the contributing inputs.

SLM1 Lens

CAM

(a) (b) (c)

Fig. S3. Mutually incoherent inputs. (a) Characterization setup. Three independent laser
beams are modulated by a SLM before being focused onto a camera. (b, c) Camera images.
The SLM is used to (b) separate the beams in the focal plane or to (c) focus them in the same
point. No interference fringes are present when the beams overlap, confirming that the three
fields are mutually incoherent.

pen-type visual fault locator FOSCO BOB-VFL650-10), with a linewidth (HeNe ≈ 10 MHz, VFL
≈ 1 THz) much larger than the bandwidth of the employed detector (Basler acA640-750um,
bandwidth ≈ 10÷ 100 Hz). This ensures that we can consider them mutually incoherent. To
confirm it, we focused the three laser beams into a single spot, checking that no interference
fringes are visible (see Fig. S3).

3. COHERENCE MATRIX SPACE

In this section we describe the space of the allowed coherence matrices. As discussed in the
main text, the coherence matrix is Hermitian and normalized such that its diagonal elements are
1. For three field E1, E2 and E3, these conditions leave three degrees of freedom, which are the
mutual degrees of coherence γ12, γ13 and γ23. Even though the degrees of coherence are complex
quantities, in this work we focus specifically on their magnitudes, as the phase corresponds only
to a spatial shift of the interference fringes. Thus, for three fields, we can visualize all possible
combinations of the degree of coherence magnitudes in a three-dimensional space. However, not
any combination of degrees of coherence is physically acceptable. In fact, the coherence matrix
must also be positive semi-definite [3]. It translates into the condition of real and positive (or zero)
eigenvalues. We show in Fig. S4 the contour of the space where the positive semi-definiteness is
satisfied.

4. LINEAR PORT

In this section we characterize the linear transformation implemented with the system of complex
medium and SLM. In the main text, we focused on the specific case of a 3× 3−port, that is
a device that mixes three input fields into three output fields with controlled amplitude and
phase. Thus, each input Ein

i generates three outputs according to Eout
1 = t1iEin

i , Eout
2 = t2iEin

i and
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Fig. S4. Graphical representation of the space of allowed coherence matrices for three fields E1,
E2 and E3. γij represents the magnitude of the mutual degree of coherence of the two fields Ei
and Ej.

(a) (b)

Fig. S5. Spatial filtering. Output fields’ intensity distributions (a) before and (b) after three
small circular apertures placed before the second SLM.

Eout
3 = t3iEin

i . Turning off two of the three inputs, we can experimentally measure the coefficients
t1i, t2i and t3i. Characterizing these coefficients is the topic of the present section.

We consider the input Ein
1 , and we measure the output intensities I1 = |t11Ein

1 |2, I2 = |t21Ein
1 |2

and I3 = |t31Ein
1 |2. We show an example of the resulting intensity distributions in Fig. S5a. The

output beams, resulting from a speckle pattern, do not show a clean Gaussian profile. This
is detrimental for the reconstruction of the degree of coherence from the interference pattern.
Therefore, we introduce three small circular apertures (0.5 mm in diameter, spaced by roughly
2 mm) before the second SLM. We show in Fig. S5b the resulting spatially filtered beams.

We then characterize the output intensities when we modify the encoded coefficients. Given
the desired coefficients, we calculate the needed SLM mask T̂SLM,i according to Eq. (10) in the
main text. We then increase the magnitudes of t21 and t31 from 0 to 1, keeping t11 constant and
equal to 1 (Fig. S6a). We measure that I1 decreases while we increase the intensities I2 and I3.
This happens mainly because the overall power distributed in the three outputs is conserved
between the transformations. Thus, if we increase the intensities of the second and third output,
then I1 must decrease accordingly. We correct for this effect by characterizing the intensity ratios
I2/I1 and I3/I1, which are the relevant quantities for the linear port (Fig. S6b), and we use the
measured characteristics to calibrate the SLM masks. We repeat the measurement 100 times (for a
total time of about 30 minutes), resulting in the reported error bars, which show the maximum
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Fig. S6. Linear port characterization. (a) Power conservation. If we increase t21 and t31, keep-
ing constant t11, the amplitude of the high intensity output reduces, to conserve the overall
power shared between the outputs. (b) Intensity ratios. We measured the ratios I2/I1 and I3/I1
for increasing t21 and t31. The error bars (which show the maximum deviation from the mean
value) are obtained repeating the measurement 100 times. (c) Cross-talk analysis. We modulate
t21 from 0 to 1, while keeping t31 constant. We repeat the measurement changing the value of
t31. The error bars on I2/I1 show the maximum deviation from the mean value.

(a) (b)

Fig. S7. Feedback. (a) The encoded values γenc are iteratively corrected using the error be-
tween the desired and the measured degrees of coherence. (b) Consequently, the reconstructed
degrees of coherence γrec converge to the desired values, which in this case are γ12 = 0.3,
γ13 = 0.5 and γ23 = 0.6.

deviation from the mean value.
The next step is to characterize the cross-talk between the output beams. In fact, if the outputs

are not completely independent, changing the intensity of one of them will affect the other two.
In Fig. S6c we increase the intensity of the output I2 (t21 from 0 to 1), while keeping I3 constant.
We then repeat the measurement increasing the magnitude of t31. We find that the fluctuations
of the intensity I3 are within the error bar of I2, which is comparable to the typical error that we
report in Fig. S6b. We then conclude that the systematic cross-talk is below the statistical noise,
hence not relevant.

5. GRADIENT DESCENT OPTIMIZATION

In this section we describe the feedback mechanism employed to achieve the accuracy in the
control of the coherence matrix reported in the main text. Mainly due to errors in the calibration
of the SLM phase masks [T̂SLM,i in Eq. (10) of the main text], we measure deviations between the
reconstructed and the encoded degrees of coherence. Thus, we use a gradient descent algorithm
to minimize the encoding errors.

Let us consider the pair of fields Ei and Ej. At the nth iteration step, we encode the degree
of coherence γenc

ij (n), and reconstruct γrec
ij (n). We evaluate the encoding error ε(n) = γrec

ij (n)−
γenc

ij (n) and, for the next iteration, we correct the encoded value following the relation

γenc
ij (n + 1) = γenc

ij (n) + ηε(n) , (S6)
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where η is the feedback strength, that we used for all the coherence matrices. From the new values
of γenc

ij (n + 1) for each pair, we construct the corrected linear port. We reiterate the process until
we are satisfied with the final encoding error (ε < 0.01 in our case). The gradient descent is the
last step of the calibration of the setup. After running it once, we know the coefficients of the
linear port which minimize the error, and the reconstructed degree of coherence is stable over
time.

We illustrate the optimization procedure in Fig. S7. We want to encode the values γ12 = 0.3,
γ13 = 0.5 and γ23 = 0.6. At each iteration, we correct the encoded values (Fig. S7a), while the
reconstructed degree of coherence converge to the desired quantity (Fig. S7b).

6. UNITARITY OF A LINEAR TRANSFORMATION AND OVERALL COHERENCE

Let us consider a set of normalized input fields Ein, characterized by a coherence matrix Kin =
〈EinE†

in〉. We apply a unitary transformation Û to get the set of output fields Eout = ÛEin, with
coherence matrix Kout = 〈EoutE†

out〉. By definition, the unitary transformation Û satisfies the
relation ÛÛ† = Û†Û = I, where the symbol † stands for the conjugate transpose, and I is the
identity matrix.

The overall coherence S of the system of n fields Eout is defined as [4]

S =
n

n− 1

[
tr
(
K2

out
)

(trKout)
2 −

1
n

]
, (S7)

where tr stands for matrix trace. This quantity is invariant under unitary transformation. To
prove it, we expand the traces

tr
(

K2
out

)
= tr

(
〈EoutE†

out〉2
)
= tr

[(
Û〈EinE†

in〉Û†
)2
]
= tr

[(
ÛKinÛ†

)2
]

, (S8)

tr (Kout) = tr
(
〈EoutE†

out〉
)
= tr

[
Û〈EinE†

in〉Û†
]
= tr

[
ÛKinÛ†

]
, (S9)

and, using the definition of unitary transformation and the cyclic property of the trace, we obtain

tr
(

K2
out

)
= tr

(
ÛKinÛ†ÛKinÛ†

)
= tr

(
KinÛ†ÛKinÛ†Û

)
= tr

(
K2

in

)
. (S10)

tr (Kout) = tr
(

ÛKinÛ†
)
= tr

(
KinÛ†Û

)
= tr (Kin) . (S11)

We proved that tr
(
K2

out
)
= tr

(
K2

in
)

and tr (Kout) = tr (Kin), thus confirming that the overall
coherence remains unaffected under unitary transformations.
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