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Statistical optics modeling of
dark-field scattering in X-ray grating
interferometers: supplemental
document
In this supplement, we provide details associated with two separate topics.

The first topic relates to the convolutional blurring model for the dark-field effect. We summarize
the model as it has been applied in the literature, address some of its deficiencies, and then
propose a modified version that aligns with the statistical optics approach. The final result, as
stated in Eq. S25, is actually quite straightforward. It states that the Talbot fringe is comprised of
two portions, namely specular and scattered components with relative weights dictated by the
variance of the phase perturbation. The scattered fringe component is given by a convolution of
an effective scattered spot function with the nominal Talbot fringe (in the absence of scattering)
which reduces the visibility of this component.

The second section provides a derivation of the autocorrelation function for the refractive index
distribution associated with a random ensemble of hard microspheres. This 3D autocorrelation
function is used in the statistical optics model to evaluate the 2D autocorrelation function of the
scattered radiation field, which in turn allows us to find the detected visibility of the Talbot fringe.

1. CONVOLUTIONAL BLURRING MODEL

Convolutional blurring is a phenomenological model in which a small, spatially localized region
of the object generates a cone of small-angle scattered radiation, typically taken to have a Gaussian
distribution in angle space. Upon reaching the detection plane, this scattered radiation forms a
spot with a Gaussian intensity profile that can be considered a type of scattering point-spread
function. The width of this Gaussian impulse response can range from much less than the fringe
period to much greater, depending on the size of the scattering particles. When the spot width is
on the order of or greater than the fringe period, a convolution of the scattering impulse response
with the nominal Talbot fringe pattern (formed in the absence of scattering) yields a blurred
version of the fringe with reduced visibility. In the literature, various investigators have utilized
this model [1–4]. The scattering properties of the object are in general spatially varying, so an
object can be viewed as a space-variant system comprised of localized isoplanatic regions, each
having its own scattering impulse response.

To analyze this model as previously implemented in the literature, we begin with a Gaussian
scatter blur spot intensity given by

g(x, y) =
1

4πr2
0

e−(x2+y2)/ r2
0 . (S1)

We also choose the nominal phase of the reference Talbot fringe (without scattering) such that the
fringe intensity can be expressed as a Fourier sine series,

IT0(x, y) = I0 +
N

∑
n=1

bn sin(2πnx/p2). (S2)

The convolution of these two functions is readily carried out in the Fourier domain as,

IT(x, y) = g(x, y) ∗ IT0(x, y) = F−1 {G(νx, νy)IT0(νx, νy)
}

, (S3)

where the transforms of g(x, y) and IT0(x, y) are, respectively,

G(νx, νy) = exp
[
−(πr0)

2
(

ν2
x + ν2

y

)]
, (S4)



and

IT0(νx, νy) = I0δ(νx, νy) +
i
2

N

∑
n=1

bn
[
δ(νx + n/p2, νy)− δ(νx − n/p2, νy)

]
. (S5)

Explicitly writing the inverse transform and using the sifting property of the delta functions in
IT0(νx, νy) leads to

IT(x, y) = g(x, y) ∗ IT0(x, y) =
∞∫∫
−∞

G(νx)IT0(νx)ei2π(νx x+νyy)dνxdνy

= I0 +
i
2

N

∑
n=1

bne−(πr0n/p2)
2 (

e−i2πnx/p2 − ei2πnx/p2
)

= I0 +
N

∑
n=1

bne−(πr0n/p2)
2

sin(2πnx/p2). (S6)

If we let
ξn = exp

[
− (πr0n/p2)

2
]

, (S7)

then the Talbot fringe in the presence of scattering becomes

IT(x, y) = I0 +
N

∑
n=1

ξnbn sin(2πnx/p2). (S8)

This result is similar to our previous finding of Eq. 12 based on coherence considerations, so at
first glance we are tempted to view ξn as analogous to a field coherence function.

While this approach is attractive for its apparent simplicity, it is problematic for a few key
reasons. First, for a monochromatic source, we saw in Sec. 5 that the scattered radiation creates
a speckled version of the Talbot fringe, not a locally smooth “blurred” version, so the physical
picture is not strictly correct. However, this need not stop us from applying the model, or some
variant of it, if it yields a potentially useful result. Second, we know from Sec. 4.4 (see Eq. 49)
that the field coherence function, or normalized field autocorrelation function, evaluated at the
detection plane is generally of the form (assuming a thin medium with ρq = 1),

γq = µd(∆xq) = exp
[
−σ2

φ

(
1− cφ

(
zs

L + d
∆xq

))]
. (S9)

Even though the normalized autocovariance function of the scattering object’s phase profile,
cφ, may be well approximated by a Gaussian (particularly for a low concentration of scattering
particles when f << 1), the field coherence function will in general not be Gaussian in contrast to
Eq. S7 for ξn. Third, if the field coherence function were purely Gaussian, decaying to zero with
increasing n as suggested by Eq. S7, then there would be no specular component.1 However, as we
saw in Sec. 4.5.1, lack of a specular component means we are only considering the regime in which
σφ ≥ 2.0. Lastly, the phenomolgical blurring model suggests that for a given scattering object,
the blur spot size r0 should increase as the distance between the object and the detection plane
increases. This in turn means the visibility should only decrease as the object moves farther away
from the detection plane. However, this behavior is not consistent with our previous findings
(see Fig. 9), where the visibility goes up if the object is placed in front of G1 and is moved farther
away from the detection plane, although some previous work has addressed this problem [3, 4].
Clearly, though, some modifications are in order if we would like to have a blurring model that is
consistent with the more rigorous statistical optics model. In the remainder of this section we
develop a new version of the convolutional blurring model that overcomes the aforementioned
deficiencies.

We begin by modifying the statistical optics model to put it into a slightly different form that is
more amenable for comparison to the new convolutional blurring formulation. For this purpose
we assume cφ(∆α) is Gaussian, as was previously done in Sec. 4.5.1 (Eq. 57),

cφ(∆α) = exp
[
− (∆α/R)2

]
, (S10)

1If a specular component of a monochromatic beam were present, then this component would always remain spatially
correlated with itself for arbitrary lateral separation, meaning the field coherence function would have a non-zero asymptote
for large separations (see [5], Sec. 5.4.2). The converse implies that a beam with an ensemble-average coherence function that
decays to zero must have no specular component.
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where R is a correlation radius related to the spatial frequency content of the scattering object’s
phase profile. Setting ∆α = ∆xqzs/(L + d) and using Eq. 50 for ∆xq, the expression for the
coherence coefficients (Eq. S9) becomes

γq = exp
[
−σ2

φ

(
1− e−(q/q0)2

)]
, (S11)

where

q0 =
p1R
λ
·


(

L + d
zs

)(
1
d

)
0 < zs ≤ L(

L + d
zs

)(
1

L + d− zs

)
L < zs < L + d.

(S12)

We can now attempt to create a version of the convolutional blurring model with coherence
coefficients that better match this result.

To construct such a modified convolutional blurring model, we start by making a small change
to the Gaussian blur spot definition of Eq. S1 to account for the type of G1 phase grating by letting
r0 → r0/η:

ĝ(x, y) =
1

4πη2r2
0

e−η2(x2+y2)/ r2
0 , (S13)

where η = 1 for a π/2-phase G1 and η = 2 for a π-phase G1. The same change is also made to
the exponential of Eq. S7,

ξ̂n = exp
[
− (πr0n/ηp2)

2
]
= exp

[
− (n/n0)

2
]

, (S14)

with n0 = ηp2/πr0. Next, we adopt a revised expression for the coherence coefficients that
includes a specular component plus the Gaussian coherence function ξn weighted by the fraction
of scattered power as follows:

ζn , e−σ2
φ︸︷︷︸

specular
fraction

+ (1− e−σ2
φ )︸ ︷︷ ︸

scattered
fraction

ξ̂n. (S15)

A third change comes from assuming the radial blur spot size is generated by a scattered cone of
radiation (with a cone half-angle of θs) propagating over an effective distance, deff:

r0 = θsdeff, (S16)

where deff depends on whether the scattering object is located before or after G1,

deff =

 zsd/L 0 < zs ≤ L

L + d− zs L < zs < L + d.
(S17)

Note that deff varies with zs in the same way that the differential phase contrast sensitivity does
[6]; namely, it starts at zero when the object is next to G0 (zs = 0), rises linearly to equal d when
the object is next to G1 (zs = L), then decreases linearly to zero as the object moves toward the
detection plane. Thus, the parameter n0 in Eq. S14 becomes,

n0 =
ηp2
πr0

=
ηp2

πθsdeff
=

p1
πθsdeff

(
1 +

d
L

)
. (S18)

Here we used a known relation for the period of G2, namely p2 = (p1/η)(1+ d/L) [7]. Lastly, the
scattering cone half-angle, θs, depends on the ensemble-average coherence area of the radiation
field leaving the scatterer. If the field coherence area is denoted as Aµ, then the solid angle of the
scattered radiation is given by Ωs = λ2/Aµ (see [8], Eq. 6.12). The solid angle is related to the
cone half-angle via Ωs = πθ2

s , so

θs =
λ√
πAµ

. (S19)

For a random phase object, Goodman has derived the following function that relates the coherence
area of the scattered field to the correlation area, πR2, of the phase profile ([5], Eq. 5.64),

χ(σφ) =
Aµ(σφ)

πR2 =
e−σ2

φ

1− e−σ2
φ

[
Ei
(

σ2
φ

)
− E − ln

(
σ2

φ

)]
, (S20)
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where Ei(x) represents the exponential integral, and E = 0.577216 is Euler’s constant ([9], p. 15,
Eq. 1.2.5). Here the phase correlation radius, R, is precisely the same as that used in the statistical
optics model (Eq. S10). Roughly speaking, R is the characteristic particle size of the scattering
object. The scattering angle can now be written as,

θs(σφ) =
λ

πR
√

χ(σφ)
. (S21)

Inserting this expression for θs, along with Eq. S17 for deff, into Eq. S18, we have

n0 =
p1R

√
χ(σφ)

λ
·


(

L + d
zs

)(
1
d

)
0 < zs ≤ L(

L + d
L

)(
1

L + d− zs

)
L < zs < L + d.

(S22)

Comparison with Eq. S12 for q0 shows n0 ' q0

√
χ(σφ), with equality occurring when the

scattering object is placed adjacent to G1 (i.e., zs = L).
This completes our modified version of the convolutional blurring model. To summarize, the

Talbot fringe in the presence of a thin scattering object (with ρq = 1) is given by

IT(x, y) = I0 +
N

∑
n=1

ζnbn sin(2πnx/p2), (S23)

with the following expression for the coherence coefficients:

ζn = e−σ2
φ + (1− e−σ2

φ )e−(n/n0)2
. (S24)
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Fig. S1. Comparison of γq coherence coefficients (statistical optics model, Eq. S12) plotted
with circles, and ζn coefficients (modified convolutional blurring model, Eq.S24) plotted with
asterisks. For these plots q0 = 3 and the scattering object is located adjacent to G1 (i.e., zs = L)

so n0 = q0

√
χ(σφ).

In terms of a convolution with the modified blur spot ĝ(x, y), Eq. S23 can be rewritten as

IT(x, y) = e−σ2
φ IT0(x, y)︸ ︷︷ ︸
specular
portion

+ (1− e−σ2
φ ) ĝ(x, y) ∗ IT0(x, y)︸ ︷︷ ︸

scattered
portion

, (S25)

with the blur spot size, r0, given by Eq. S16 (in combination with Eq. S17 and Eq. S21). This
formulation is best suited for scattering objects having a low concentration of scattering particles
(i.e., f . 0.1) that are well-approximated by a Gaussian phase correlation function. The value
of n0, as given by Eq. S22, determines how quickly the amplitudes of the various terms in the
Fourier sine expansion are reduced by loss of ensemble-average coherence as a consequence of
scattering. The visibility of the Talbot fringe is dominated by the b1 term, while the higher-order
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Fig. S2. Plots of Vd(zs) for a dilute suspension of monodispere microspheres, represented by a
random Gaussian phase screen. The graph lines are from the previous statistical optics analysis
(Fig. 9b), while the solid circles are for our modified convolutional blurring model.

coefficients affect the cross-sectional shape of the fringe. Ultimately, the detected visibility signal
derives from a convolution of the G2 analyzer grating transmission function with IT(x, y).

In Figure S1 we show example plots of γq and ζn for various values of σφ. While these two
functions are not identical, their correspondence is very close to one another. Indeed, if we use the
statistical optics model but replace γq with ζn (and use n in place of q) we obtain almost the same
results. For example, Figure S2 shows the detected visibility versus scattering object location for
the two models.

2. AUTOCORRELATION FUNCTION OF A RANDOM DISTRIBUTION OF HARD
SPHERICAL PARTICLES

In this section, we provide a derivation of the autocorrelation function for a random distribution
of impenetrable “hard” microspheres following the approach described by Torquato and Stell
[10]. An alternate approach as been recently published by Lee et al. for the analysis of photonic
glasses [11]. We restrict our discussion to the case of a monodisperse ensemble in which all of the
microspheres have the same diameter. This is an interesting case not only because it demonstrates,
in a theoretically tractable fashion, the key features characteristic in extending the analysis from
a single sphere to multiple spherical scatterers, but it is one that can be readily implemented
experimentally. An excellent reference on this topic, as well as the theory of random media in
general, is the book by Torquato [12].

A key parameter associated with the distribution is the volume fraction, f , of the suspension
occupied by the spheres. For very dilute suspensions, the location of the spheres is random
with a uniform probability density function. However, as the volume fraction increases, a
uniform density function requires some of the spheres to overlap, but since the spheres are
assumed to be hard and non-overlapping, the density function must necessarily deviate from
a constant. The statistical arrangement of the spheres for any allowable value of f is governed
by the so-called pair correlation function, g2(~r12), where~r12 = ~r2 −~r1 is a vector connecting the
centers of any two spheres (denoted as particles 1 and 2, located at~r1 and~r2, respectively). The
underlying assumptions here are: (1) the medium is homogeneous, or spatially stationary, in
three-dimensional space, and (2) the potential energy associated with the particle arrangement is
dominated by a sum of two-body potential terms, with three-body and higher-order potential
contributions being negligible in comparison. For a hard-sphere potential, with identical spheres
having radius R, the pair correlation function must be zero for |~r12| ≤ 2R. The form of g2
for separations beyond 2R is related to the way in which neighboring spheres are statistically
positioned about a central sphere. For large separations in disordered systems with no long-range
order, g2(r → ∞) asymptotically approaches unity since there is a uniform probability of finding
another sphere center in a differential volume element d~r at any given large separation value.

For a statistically isotropic configuration, we are free to place the coordinate system origin at
the center of sphere 1, so g2(r) then becomes a function of the radial separation r = |~r2|. In this
case, g2(r) is known as the radial distribution function. We note that g2 is a statistical function that is
generally referred to as either a correlation function or a distribution function, but it is instructive
to realize that g2 is fundamentally a type of probability density function. More specifically, if
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the average number density of spheres is denoted ρ = N/V (with N being the total number of
spheres and V the sample volume), then ρg2(r) d~r = ρg2(r)4πr2dr is the expected number of
neighboring sphere centers located within a thin spherical shell of thickness dr at a distance r
from the central sphere origin.

It is convenient to define the total correlation function h(~r) as

h(~r) = g2(~r)− 1. (S26)

For disordered systems, h(~r) → 0 as r → ∞. As noted in most any textbook on statistical
mechanics, Ornstein and Zernike in 1914 proposed a decomposition of h(~r12) into a direct part,
c(~r12), plus an indirect part given in the form of a superposition integral [13, 14]:

h(~r12) = c(~r12) + ρ
∫∫∫

h(~r23)c(~r13)d~r3

= c(~r12) + ρ
∫∫∫

h(~r13 −~r12)c(~r13)d~r3, (S27)

where~rij = ~rj −~ri. The direct term accounts for the influence of a particle at~r1 on one at~r2,
which is generally short-ranged. The indirect part, given by the integral term above, accounts
for the influence of a particle at~r1 on another particle at~r3, which in turn affects the location of
the particle at~r2 either directly, or indirectly through interaction with other particles. We can
simplify the notation by letting~r = ~r12 and~r′ = ~r13. Also, for a homogeneous and isotropic
system (e.g. monodisperse microspheres), h(~r) = h(r) and c(~r) = c(r) are radially symmetric
functions of r = |~r|, so the Ornstein-Zernike equation can be written as

h(r) = c(r) + ρ
∫∫∫

h(|~r−~r′|)c(r′)d~r′

= c(r) + ρ [h(r) ∗ c(r)] , (S28)

where the asterik denotes a three-dimensional convolution (not to be confused with a one-
dimensional convolution in the radial variable alone; see [15], Sec. 9). In order to solve for both
h(r) and c(r), an additional constraint, known as a closure relation, is required. For spheres of
radius R, a common approach is to employ the Percus-Yevick (PY) closure approximation which,
as noted by Torquato, requires h(r) = −1 for 0 ≤ r ≤ 2R, and c(r) = 0 for r > 2R. Enforcing
these boundary conditions leads to an analytical solution for c(r) [16],

c(r) =


−λ1 − 3ηλ2

( r
R

)
− ηλ1

16

( r
R

)3
, r ≤ 2R

0 r > 2R,
(S29)

where

λ1 =
(1 + 2η)2

(1− η)4 , λ2 =
(1 + η/2)2

(1− η)4 , (S30)

and η = 4πρR3/3. This expression for c(r) can in turn be Fourier transformed to yield (see [12],
Eq. 3.61),

c̃(s) =
−4π

s3

{
λ1 [sin q− q cos q] +

6ηλ2
q

[
2q sin q + (2− q2) cos q− 2

]
+

ηλ1
2q3

[
(4q3 − 24q) sin q− (q4 − 12q2 + 24) cos q + 24

]}
(S31)

where q = 2Rs is a dimensionless wave number, and the tilde denotes a Fourier-domain function.
Taking the Fourier transform the Ornstein-Zernike equation (Eq. S28) yields,

h̃(s) = c̃(s) + ρc̃(s)h̃(s) =
c̃(s)

1− ρc̃(s)
. (S32)

Applying an inverse transform, we then have

h(r) = F−1
3D
{

h̃(s)
}
=

1
2π2r

∫ ∞

0

c̃(s)
1− ρc̃(s)

s sin(sr)ds. (S33)
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Fig. S3. Plots of the radial distribution function, g2(r), for a collection of monodisperse mi-
crospheres (radius = R) using three different values of normalized concentration, or volume
fraction, f = 0.01, 0.20 and 0.40.

It is a reasonably staightforward matter to numerically evaluate this equation for h(r) by using
Eq. S31 for c̃(s), combined with a judiuous choice of sampling in both the spatial and spatial-
frequency domains as described by Lado [17]. The radial distribution function, g2(r), then follows
trivially since g2(r) = h(r) + 1. To make the dependence of f explicit in Eq. S33, we note that the
average number density of microspheres, ρ = N/V, can be expressed in terms of the microsphere
volume fraction f = NVs/V (with Vs being the volume of an individual sphere), so ρ = f /Vs.
Plots of g2(r) are shown in Fig. S3 for f = 0.01, 0.20 and 0.40.

Our primary interest lies in finding the statistical autocorrelation function for the ensemble
of microspheres. The ensemble consists of two phases, with phase 1 being the matrix material
surrounding the spheres (e.g., liquid or air) and phase 2 being the spherical particles themselves
(e.g., glass or plastic). Following Torquato, we first evaluate the two-point probability function
for the spherical-particle phase ([10], Eq. 5.40):

S(2)
2 (r) = ρ m(r) ∗m(r) + ρ2g2(r) ∗m(r) ∗m(r)

= ρ m(r) ∗m(r) + ρ2[1 + h(r)] ∗m(r) ∗m(r)

= ρ m(r) ∗m(r) + ρ2[1 ∗m(r) ∗m(r)] + ρ2[h(r) ∗m(r) ∗m(r)], (S34)

where m(r) is the so-called indicator function for a sphere of radius R, expressed in terms of the
Heaviside step function as

m(r) = H(R− r) =

 1, r ≤ R

0, r > R.
(S35)

As before, the asterisks in Eq. S34 denote three-dimensional convolutions. This result applies to a
statistically homogeneous and isotropic ensemble of impenetrable spheres.

By definition, S(2)
2 (r) corresponds to the probability that any two points separated by a dis-

tance r are both contained inside spherical particles (the superscript (2) indicates phase 2). The

complement, S(1)
2 (r) = S(2)

2 (r) + 1− 2 f , is the probability that the two points reside in the matrix
phase. A third option, namely the probability that the first point lies in the matrix and the second

point lies in a sphere, is given by S(12)
2 (r) = f − S(2)

2 (r), with its complement S(21)
2 (r) = S(12)

2 (r).
The sum of all four two-point probability functions therefore equals one. While Torquato refers to

S(i)
n as the n-point probability function for phase i, they are mathematically equivalent to n-point

correlation functions ([10], Eq. 2.6). Therefore the autocorrelation function of the microsphere
ensemble that we seek is

Γe(r) = S(2)
2 (r). (S36)

To evaluate this function, we return to Eq. S34 and note that

m(r) ∗m(r) = A(r), (S37)
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where A(r) is the autocorrelation function for an individual sphere (Eq. 66) and, for any constant
a,

a ∗m(r) = a
∫∫∫

m(r)d~r = aVs, (S38)

where Vs is the volume of a sphere. Therefore, 1 ∗ m(r) ∗ m(r) = Vs ∗ m(r) = V2
s . Combining

results, Eq. S36 becomes

Γe(r) = ρA(r) + ρ2V2
s + ρ2 [h(r) ∗ A(r)] . (S39)

It is instructive to consider the value of Γe(r) in the two limits of r = 0 and r >> 2R. To do so, we
first rewrite Eq. S39 using ρ = f /Vs and h(r) = g2(r)− 1, obtaining

Γe(r) =
f

Vs
A(r) + f 2 +

(
f

Vs

)2
{[g2(r) ∗ A(r)]− [1 ∗ A(r)]} . (S40)

For r = 0 we know As(0) = Vs. Also we observe that [g2(r) ∗ A(r)](0) = 0. In other words,
the overlap integral of g2(r) times A(r) at zero shift must be identically zero because g2(r) = 0
for 0 ≤ r ≤ 2R, while A(r) is zero for r ≥ 2R. Finally, we have [1 ∗ A(r)](0) = V2

s because
the volume integral of A(r) over 3D space is V2

s . Putting these findings together leads to the
following simple result

Γe(0) = f . (S41)

Thus we see the normalized autocorrelation function of the microsphere ensemble is

γe(r) =
Γe(r)
Γe(0)

=
Γe(r)

f
. (S42)

For the case of r >> 2R, we have As = 0 and g2 → 1. This last relation means that for a large
shift, the convolution [g2(r) ∗ A(r)]→ [1 ∗ A(r)]. We are therefore left with

Γe(r >> 2R) = f 2. (S43)

From this result it follows that the large-r limit of γe(r) has an asymptote equal to f . Assuming
the particle distribution is spatially ergodic, γe(r) corresponds to the normalized overlap volume
of a random distribution of spheres with a copy of the distribution shifted in any direction by r.
A non-zero asymptote means there remains a constant overlap volume for arbitrarily large shifts.

For purposes of numerical computation, we again return to Eq. S34 and note that the last term
is preferably evaluated in the Fourier domain, thereby converting the following more tedious
double spatial convolution into the inverse transform of a product,

h(r) ∗m(r) ∗m(r) = F−1
3D

{
h̃(s)m̃2(s)

}
, (S44)

where

m̃(s) =
4π

s

∫ R

0
r sin(sr)dr =

4π

s

[
sin(sR)

s2 − R cos(sR)
s

]
. (S45)

Using these Fourier domain results, Eq. S39 becomes,

Γe(r) = ρA(r) + ρ2V2
s + ρ2F−1

3D

{
h̃(s)m̃2(s)

}
. (S46)

Finally, to again make the dependence on f explicit, we substitute ρ = N/V = f /Vs (recall ρ is
the average number density of spheres) and arrive at following alternative expression for the
normalized ensemble autocorrelation function,

γe(r) =
A(r)
Vs

+ f
[

1 +
1

V2
s
F−1

3D

{
h̃(s)m̃2(s)

}]
. (S47)

As with Eq. S33, the inverse Fourier transform in the last term of this equation can be quite easily
evaluated numerically via a sum with proper sampling. For very dilute suspensions, as f → 0,
we see that γe(r) → A(r)/Vs, meaning the ensemble autocorrelation function asymptotically
approaches the normalized autocorrelation function of a single sphere. In Figure S4(a), we plot
γe(r) for three different values of f .
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Fig. S4. Normalized 3D autocorrelation functions for a collection of monodisperse hard mi-
crospheres (radius = R) using three different values of normalized concentration, or volume
fraction, f = 0.01, 0.20 and 0.40, calculated using the PY approximation to the Ornstein-Zernike
equation.
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