
Supplemental Document

Adaptive optics control with multi-agent
model-free reinforcement learning: supplement

B. POU,1,2,∗ F. FERREIRA,3 E. QUINONES,1 D. GRATADOUR,3,4 AND
M. MARTIN2

1Barcelona Supercomputing Center (BSC), C. Jordi Girona, 29, 08034 Barcelona, Spain
2Computer Science Department, Universitat Politècnica de Catalunya (UPC), C. Jordi Girona, 31, 08034
Barcelona, Spain
3LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Univ. Paris Diderot, Sorbonne
Paris Cite, 5 place Jules Janssen, 92195 Meudon, France
4Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611,
Australia
∗bartomeu.poumulet@bsc.es

This supplement published with Optica Publishing Group on 14 January 2022 by The Authors
under the terms of the Creative Commons Attribution 4.0 License in the format provided by the
authors and unedited. Further distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.17714879

Parent Article DOI: https://doi.org/10.1364/OE.444099

Adaptive Optics control with
Multi-Agent Model-Free
Reinforcement Learning:
supplemental document

This supplementary material provides an additional explanation on the Btt modes and Soft
Actor Critic. Moreover, it shows the pseudocode of the training process and additional RL
hyperparameters used in our simulations.

1. ADDITIONAL EXPLANATION ON THE BTT MODAL BASIS

Let’s consider the influence functions, IFi, that denote how acting on actuator i will affect the DM
shape. Any phase represented by the DM, ΦDM, can be obtained through a linear combination of
these influence functions:

ΦDM = ∑
i

fi IFi. (S1)

Because of coupling between actuators, this basis is not orthogonal and, on top of this, can
reproduce piston. While piston is not seen by a SH-WFS and does not impact image quality, it has
to be removed to avoid drifting towards actuators saturation. Additionally, producing tip and tilt
with the DM is usually not practical since it requires a lot of stroke, especially for actuators at the
edge of the pupil. In this case as well, these two modes are usually filtered out of the degrees of
freedom of the DM and compensated using a dedicated subsystem (either using a flat mirror or
the DM itself mounted on a dedicated tip-tilt mount).

The Btt basis uses the influence functions to build another representation of possible DM shapes
through orthonormal modes, spanning the full DM actuators space, but from which piston and
tip-tilt are filtered out. The method is described in appendix A of [1] and recalled hereafter. Using
the spatial covariance matrix of the actuators of Eq. (S1), one can retrieve the coefficients of the
best fit for piston and tip-tilt on Eq. (S1) and create a set of generators that do not produce those
modes. The generators matrix is then diagonalised and normalised using the corresponding
eigenvalues to obtain a matrix B describing a set of orthonormal modes from which piston and
tip-tilt have been removed. Finally, the tip-tilt modes are reintroduced in the basis by adding two
extra columns to the matrix with a single non-zero value on the diagonal obtained as the inverse
of µ, the eigenvalues of IFt

tt İFtt where IFtt are the influence functions of tip-tilt. The final basis Btt
basis is expressed as:

Btt =

0 0

B
...

...

0 0

0 . . . 0 1/µ 0

0 . . . 0 0 1/µ

. (S2)

The modes are normalised over the pupil surface, S, as 1
S
∫

B2
tt,idS = 1µm2. With this basis the

phase will computed as:

ΦDM = ∑
i

viBtt,i, (S3)

where Btt,i are the vectors of the Btt basis.

2. SOFT ACTOR CRITIC

Soft Actor Critic (SAC) [2], is considered one of the state-of-the-art methods in RL. SAC considers
a stochastic policy, π, described as a probability distribution. We can introduce SAC by taking a

closer look at its name.

1. The "soft" naming is given by the author’s to its method because it uses a maximum entropy
version of the return, JMaxEnt, where a trade-off between reward and information entropy
of the policy (denoted as H(π)) is introduced:

JMaxEnt(π) = Eπ

[
t=T−1

∑
t=0

γt(rt+1 + βH(π(·|st)))

]
, (S4)

with the entropy of a policy defined as:

H(π(·|s)) = Ea∼π(·|s) [− log(π(a|s))] , (S5)

where the notation a ∼ π indicates that the action, a, has been sampled from the policy
π and β ≥ 0 is a hyperparameter that determines the strength of the entropy against the
reward. Notice that a value of β = 0 returns the original definition of J. The entropy works
as a regularisation in the learning procedure which increases the robustness with different
initialisations and variations of hyperparameters which many other RL algorithms are
culprit of.

2. Regarding actor critic, actor denotes the policy, π, which in SAC is stochastic, and critic
denotes a function that predicts JMaxEnt starting on a state s, executing action a, and then
following the current policy afterwards denoted as Q(s, a). The idea of the critic is to guide
the actor to policies that maximise Eq. (S4).

In Deep RL, actor critic methods are functions parameterised with neural network weights,
φ and θ respectively, henceforth we can write: πφ(s) and Qθ(s, a). The neural network
parameterisation of both actor and critic done via means of neural networks is a standard
procedure in RL to overcome high dimensional state spaces.

Consider a trajectory, τ, of samples τ = (s1, a1, r2, s2, a2, r3, ...) obtained by interacting with
the environment. Minimising the following loss function L(θ), provided by comparing
critic prediction Qθ(s, a) with the soft Bellman equation [2]

L(θ) = E
s,a,r,s′∼τ,

a′∼πφ(·|s′)

1
2

Qθ(s, a)−

Soft Bellman Eq.︷ ︸︸ ︷(
r + γ(Qθ(s

′, a′)− βlog(πφ(a′|s′)))
)

2 , (S6)

provides an iterative procedure to learn θ. Notice that a′ is sampled given a s′ obtained in
the trajectory.

In SAC, the actor represents a probability distribution which is usually represented as a
normal distribution. The policy’s neural network, πφ, will output two values: a mean
vector, µφ, and a standard deviation vector σφ dependant on parameters φ. This two values
are the components of the Normal distribution N (µφ, σ2

φ). The actor should be learned in
a similar iterative manner as the critic by minimising the difference between the current
policy distribution and the exponential of the critic estimation which has been proved to
lead to better policies [2] as:

L(φ) = Es∼τ,a∼πφ(·|s)
[
β log(πφ(a|s))−Qθ(s, a)

]
. (S7)

However, estimating the gradient of the loss above is intractable because we are sampling
the actions with the same parameters that we are trying to update. To circumvent this
problem, SAC uses the so-called reparameterisation trick: sampling an action with the
policy parameters, φ, is rewritten as sampling from a deterministic function dependant on
φ and a noise variable, ε, independent of φ, which is represented with the same distribution
type as the one used to sample actions: a Normal distribution per action dimension with
mean 0 and standard deviation 1, ε ∼ N (0, I). The sampled action per update becomes:

2

â = µφ + (σ2
φ �N (0, I)), (S8)

where � indicates element-wise multiplication. Therefore, the loss expression ends up as:

L(φ) = Es∼τ,â∼ f (φ,ε)
[
β log(πφ(â|s))−Qθ(s, â)

]
. (S9)

Each loss function is used as the starting point for the backpropagation algorithm for critic
and actor respectively. Once the gradients are obtained from said algorithm, they are used
to update the weights via Gradient Descent optimisation method.

Finally, to fully understand SAC it is important to explain a few tricks used for stabilisation
purposes. First, the tuples (s, a, r, s′) obtained while interacting with the environment, are saved
in a memory buffer D. Then, at update time, batches of this memory are used to update the
weights from the actor and critic, hence now the trajectory in Eqs. (S6) and (S9) would be changed
as sampling from D. This is carried out because consecutive tuples are highly correlated and may
lead to instability.

Second, as seen in Eq. (S6), the soft Bellman equation used to compare with the Q-function
predictions depends on the same weights that are being updated θ which is another source of
instability. To solve this, a copy of the original critic network with weights θ′ is introduced with
the name of target network and is used only on the critic term present in the Soft Bellman equation.
At each update, weights θ will change and θ′ will adopt a new value via Polyak averaging:

θ′ = ρθ + (1− ρ)θ′, (S10)

where ρ is a hyperparameter to be tuned with usually low values to limit abrupt changes in the
target network.

Third, on training time, the value of β is automatically tuned via optimisation where the entropy
is constrained to a certain value, H̄, in expectation (in [2] it is simply H̄ = −Dim(A)). This can
be expressed as a loss in the following equation:

L(β) = Es∼τ,a∼πφ(·|s)
[
−βlogπφ(a|s)− H̄

]
. (S11)

With this update, the additional hyperparameter β is eliminated.
Fourth, critic estimations are known to be overoptimistic [3] which may lead to wrong actions.

The established solution to this problem is to use two Q-networks and select the minimum over
both predictions. Consequently, SAC has a total of four Q-networks if we take into account that
both online and target networks need two networks each to avoid the overestimation of the critic.

Finally, in SAC, the policy, πφ, outputs two vectors: a mean vector, µφ, and a standard devi-
ation vector σφ dependant on parameters φ. This two values are the parameters of a Normal
distribution N (µφ, σ2

φ). While training, SAC samples from the Normal distribution to obtain the
action i.e. at ∼ N (µφ, σ2

φ). This is done for exploratory purposes in order to discover actions
that may lead to more reward in the future. However, in testing time, once the policy is trained,
the action is simply the mean of the Normal distribution, at = µφ, as ineffective exploratory
actions should be avoided to achieve maximum performance.

3. PSEUDOCODE OF THE TRAINING LOOP

Pseudocode S1 shows the training process of a MARL controller in the AO context. Due to time
concerns, in our implementation, we have parallelised the update but not the action selection.
In practice, the only part that may increase the delay is the action selection, which must be
parallelised to the finest degree.

4. ADDITIONAL RL HYPERPARAMETERS

In Table S1, we show the hyperparameters used for SAC in all the AO experiments. Most of the
hyperparameter values are default ones (as reported in [2]) as they usually work well for any
problem. We experimented with the value of γ and found out that lower values of γ ∈ [0, 0.5]
lead to better performance. We recall here that γ is an hyperparameter that weighs future rewards
and, in the AO case, the commands only have a short-term effect, therefore, a small value of γ is
required for high performance.

3

Algorithm S1. MARL-AO training loop

1: Given a trained autoencoder, N policies (π1, ..., πN), N empty memories (Di, ...,DN) and a
vector of Mi modes to be controlled per agent i.

2: for episode=1 to end do
3: simulation.reset() # Resets simulation and DM shape
4: for t=0 to T do
5: raytrace() # Raytracing operation for the target image and WFS
6: wfs.compute_image() # Computes WFS image based on last raytracing operation
7: autoencoder.denoise_wfs_image()
8: wfs.do_centroids()
9: ĉt = integrator.do_control() # Computes current residual commands

10: for agent i=1 to N in parallel do
11: si

t=create_state(i) # Creates state for agent i based on ĉt and previous Ĉ
12: ai

t ∼ πi(·|si
t)

13: Concatenate the actions into a joint action: at = (a1
t , ..., aN

t)

14: Ct = Btt · (Ĉt−1 − g · ĉt + at)
15: applyCommand(Ct) # Applies C simulating the delay in the DM
16: calculate_psf_image()
17: for agent i to N in parallel do
18: ri

t = − κ
|Mi | ∑m∈Mi (ĉm

t)
2

19: if t ≥ d then
20: for agent i=1 to N in parallel do
21: Add tuple (si = si

t−d, ai = ai
t−d, s′ ,i = si

t, ri = ri
t) to memory Di

22: Train SAC with mini-batches of tuples as reported in Section 2 and [2].

γ 0.1 Memory size 106

Num. hidden size 256 Batch size 256

Num. hidden layers 2 Gradient descent optimiser ADAM

ρ 0.005 β Automatic

Learning rate 0.0003 Neural Network Layers Fully connected

Table S1. Soft Actor Critic hyperparameters.

REFERENCES

1. F. Ferreira, E. Gendron, G. Rousset, and D. Gratadour, “Numerical estimation of wavefront
error breakdown in adaptive optics,” Astron. & Astrophys. 616, A102 (2018).

2. T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, and S. Levine, “Soft actor-critic algorithms and applications,” arXiv preprint
arXiv:1812.05905 (2018).

3. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 30 (2016), pp. 2094–2100.

4

