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S1 2D & 3D beam patterns 

According to the theory of diffraction, 2D and 3D beam patterns can be considered as cases of 
Fraunhofer diffraction (2D) and Fresnel diffraction (3D), respectively [1,2]. These phenomena 
are formulated as follows: 
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where Uo(x,y) is the complex EM field in the output plane, Ui(ξ,η) is the complex EM field in 
the input plane, λ is the wavelength, z is the propagation distance, (x,y) denotes the orthogonal 
coordinate system in the output plane, and (ξ,η) denotes the orthogonal coordinate system in 
the input plane [1]. Regarding the integral terms, the one in Eq. S1 is a Fourier transform 
consisting of a linear combination of plane waves with wavevector k = (2π/λz)(ξ,η). In contrast, 
the integral term in Eq. S2 is a linear combination of parabolically distorted plane waves with 
the same wavevector k. 

S2 Fabrication process 

 
Fig. S1 Fabrication process of the iPMSEL. 



S3 Hole-shifting method in regime of detour phase method 

As discussed in section 2.1, the hole-shifting method illustrated in Fig. 3(a) is derived from the 
detour phase method, proposed in 1966. The fundamental idea of this method is to modulate 
the complex EM field with a spatial filter placed at the Fourier plane in order to form a 2D 
beam projection. The modulations of the phase and the amplitude terms are achieved by shifting 
the position and size of a locally open aperture in the filter [3]. Because the EM field in the 
near-field plane is connected to the far-field plane by Fraunhofer diffraction, which is 
mathematically a Fourier transform, the positional shift of the holes can be treated as the phase 
shift in the detour phase method. Moreover, the manner of phase modulation clearly depends 
on the actual positional shift of the holes. The detailed phase distribution of the in-plane light 
wave was discussed in a previous work [4]. The phase modulation of the output beam can be 
formulated as a series expansion of a light wave with an ideal phase distribution exp{iφ(x,y)}, 
as follows: 
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where ∆φ(x,y) is the phase modulation of the diffracted in-plane light waves in the surface-
normal direction due to the in-plane positionally shifted holes, m (m = 0, ±1, ±2, …) is the order 
of the diffraction, and Cm is the coefficient of the mth-order diffraction. The coefficient Cm 
depends on the manner of the positional shift, or the shape of the holes, and so on; however, 
the output beam, which is based on the ±1st-order diffraction, is considered to have an ideal 
phase distribution ranging from 0 to 2π even if the positional shift of the holes is not large. This 
is a distinctive feature of phase modulation in the in-plane lasing cavity. Moreover, the strong 
0th-order out-of-plane diffraction is prevented at the M-point band edge, which is the nature of 
the diffraction in M-point band edge [5]. 

S4 Phase distribution for focusing beam 

For focusing, we simply control the phase distribution conditions at the phase-modulating layer 
so that surface-normal incident light waves in that layer have the same optical length at the 
focus, which is the ordinary condition of a flat lens. This is achieved by replacing the 
conventional phase term φp for a 2D beam pattern with the phase term φf for focusing, which is 
formulated as follows: 
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where λ is the wavelength, a is the lattice constant, r is the distance between the hole center 
and the lattice point, (x,y) denotes the orthogonal coordinates in the input plane, and f is the 
focal length. Note that the positive and negative forms of the equation correspond to concave 
and convex lenses, respectively. For this work, the parameters were set as λ = 940 nm, a =202 
nm, r = 0.08a, and f = 4 mm. The correction term (a/r) = 12.5 was included to correct the 
difference between the detour phase based on the actual positional shift (see Fig. 2(b)) and an 
ideal one; however, the correction term later proved unnecessary because the measured focal 
length was around 310 µm, which was much smaller than 4 mm. 

Next, we explain the deviation of the focal length. Because (x,y) coordinates in the 200 µm 
× 200 µm emission area are sufficiently smaller than the focal length f, Eq. S3 can simply be 
approximated as 
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The quadratic phase term in Eq. S5 has the same form as the phase term for the basic component 
of light waves in Fresnel diffraction (see Eq. S2), provided that the phase distribution can also 
be considered as the simplest form of Fresnel diffraction. Accordingly, the equivalent focal 
length f’ was obtained as 320 µm, which agreed well with the measured focal length. Therefore, 
the correct formulation of the phase distribution for focusing was obtained as  
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It is important to note that 2π modulation is achieved when the actual positional shift of the 
holes, r, ranges from -0.08a to 0.08a, which seems to correspond to the phase shift ranging 
from -0.23π to 0.23π. This should be considered as a series expansion of the ideal phase 
function even for a 3D beam pattern, as with a 2D beam pattern [4]. 

S5 Focal spot size of diffraction limit 

A projection pattern at the focal plane of an ideal lens is considered as Fraunhofer diffraction 
of the incident pattern at the lens’ entrance aperture, because the quadratic phase term for 
Fresnel diffraction (Eq. S2) cancels out the phase of the lens (Eq. S4) at the focal plane [1]. 
Accordingly, the focus pattern should be discussed in the regime of Fraunhofer diffraction. 
Because the EM field spreads over the square region of the phase-modulating layer and is 
diffracted out of plane while the shifting of holes induces phase modulation at the same time, 
it can be ideally considered as the Fraunhofer diffraction pattern of the square aperture at 
distance z = f. Hence, the intensity of the Fraunhofer diffraction pattern of the square aperture 
is calculated as 
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where A is the area of the aperture, λ is the wavelength, and wx and wy are the respective half-
widths of the aperture in the x and y directions [1]. Because the focal spot size is assumed to be 
the width of the main lobe, which is the distance between the first zero points, it is obtained as 
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Note that this differs from the usual form of the diffraction limit: 
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where λ0 is the wavelength in vacuum, n is the refractive index of the propagation medium, and 
NA is the numerical aperture. This difference is due to the nature of the well-designed imaging 
lenses used in microscopes. In the case of an imaging lens, the pencils of focusing are assumed 
to originate from a sphere whose center is at the focus and whose radius is f, as illustrated in 
Fig. S2(a); this is the so-called sine condition. Meanwhile, in the case of the flat lens in this 
work, the pencils of focusing are assumed to originate from the plane at the input aperture, as 
illustrated in Fig. S2(b). Apparently, the sine condition is not satisfied in the latter case. Thus, 
as mentioned above, the focal spot size should be discussed in terms of Eq. S9. By substituting 
the parameters λ = 940 nm, wx = 100 µm, and f = 320 µm, we obtain the focal spot size for ideal 
plane-wave incidence as ∆x = 3.01 µm, which is reasonable to consider as a rough estimate of 
the diffraction-limited spot size. 



 
Fig. S2 Schematics of focusing with (a) an imaging lens and (b) a flat lens.  

S6 Simple criterion for maximum & minimum focal length 

The focal spot size is proportional to the focal length f and inversely proportional to the aperture 
width w, as described in Eq. S9. Here, the aperture width is relatively small compared to that 
of an ordinary lens because the iPMSEL was designed to be suitable for integration, so that the 
range in which focusing occurs by overcoming the spread of diffraction becomes shorter. In 
fact, the typical width of the emission area in the iPMSEL is on the order of hundreds of 
micrometers, whereas the width of an ordinary lens is several centimeters. To clarify the 
focusing property of the iPMSEL, we should discuss the maximum focusing range explicitly. 
We provide a simple criterion for this purpose as follows. Let us consider the distance at which 
the focal spot size corresponds to the full width of the input aperture, which is the same as the 
case of the Fresnel number being 1. The distance is derived from Eq. S9 as 
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where w is the half-width of the input aperture. The focal spot size is smaller than the input 
aperture within this range,  so the equation provides a criterion for the maximum focal length. 
This relationship is visualized at a wavelength of 940 nm in Fig. S2. In this work, the maximum 
focal length is calculated as 1.06 cm. Note that this only provides a limit on the distance for 
focusing: the actual focal length should either be set sufficiently shorter than the maximum 
focal length or determined so as to satisfy the requirement for the focal spot size. If we take the 
actual focal length to be less than half the maximum focal length, we can roughly estimate that 
a focal length of several millimeters requires the emission area to have a width of more than 
275 µm, as shown in Fig. S3(a). Similarly, Fig. S3(b) shows that a focal length of several 
centimeters requires the emission area to have a width of more than 870 µm. 

 
Fig. S3 Dependence of the maximum focal length on the aperture width for (a) a narrow range 

and (b) a wide range, at a wavelength of 940 nm. 

Meanwhile the minimum focal length is considered as following. The smaller the focal length, 
the higher the phase distribution of each hole, as shown in Eq. (S5). Meanwhile the phase 
difference between neighboring holes must be below 2π, or it is unable to express the phase 



distribution, so that it gives the upper limit of size of the emission area depends on the focal 
length. According to the Eq. (S5), the phase distribution of the hole at (x,y)=(w,0) is given as  
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while that of the neighboring hole is given as  
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Therefore, the phase difference between neighboring holes is described as  
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where a is the lattice constant. Because the Eq. S14 must be below 2π, it gives the condition of 
minimum focal length as 

.aw f
λ

<                                (S15) 

In the case of the M-point band edge, Eq. S15 can be written as 
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