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This document provides supplementary information to “Color computational ghost 
imaging based on plug-and-play generalized alternating projection”. We provide more 
information including: the quantitative evaluation of different color computational ghost 
imaging (CGI) reconstruction algorithms, the proposed method using different denoising 
algorithms, the proposed method using different demosaicking algorithms in simulation, 
and the quantitative evaluation of different reconstruction algorithms in experiments.

1. Quantitative evaluation of different color CGI reconstruction algorithms 
in simulations

To quantitatively compare the reconstruction results of different algorithms, we introduce 
two metric functions, the peak signal to noise ratio (PSNR) and the structural similarity 
index (SSIM). PSNR is the most popular objective method for evaluating image quality 
and SSIM is used to measure the similarity of two images. Their formulas are as follows:
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where n is the bit depth, η and σ2 represent the mean and variance of the image, 
respectively. σÔO stands for the covariance between the reconstructed color image and the 
groundtruth and c1, c2 are the regularization parameters. The quantitative evaluation 
curves of the color reconstructed images are shown in Fig. S1. Overall, the PSNR and 
SSIM of the reconstructed images obtained by different algorithms increase with the 
increase of the sampling ratio (SR) in both target color images. This indicates that the loss 
of image quality caused by the reduction of SR is inevitable. Compared with the other 
three algorithms, the proposed method has better reconstruction quality under different 
SRs, so its PSNR and SSIM curves are always at a higher position. Consistent with the 
restored results, it is difficult for the correlation algorithm to reconstruct a clear image, 
and the corresponding metric functions values are extremely low, even in the case of full 
sampling. Although the conventional plug-and-play generalized alternating projection 
(PnP-GAP) and compressed sensing ghost imaging (CSGI) algorithms perform well when 
SR is 1, both of their curves are steeper and fall faster. This shows that the decrease in SR 
makes restored images have a more serious loss of image quality, especially the color 
information. In the process of reconstructing mosaic images through multiple iterative 
optimizations, the Bayer color mask used to encode color information is seriously 
damaged and difficult to reconstruct completely. Therefore, it is difficult to restore the 
original color information. The PSNR and SSIM curves of the reconstructed images by 
the algorithm of a pre-trained deep demosaicking network (DDN) [1] embedding into 
PnP-GAP iteration are smoother overall. For simple images, such as the “bird” used in 
the simulation, when the SR is as low as 0.0625, the PSNR is above 24 and the SSIM is 



above 0.8. In this case, the reconstructed images quality is even higher than that of the 
fully sampling CSGI, which is equivalent to the SR of 0.6 or even higher for the 
traditional PnP-GAP algorithm. For target color images with more detailed information, 
the proposed algorithm can also achieve PSNR values above 18 and SSIM above 0.6. It 
indicates that the algorithm can also recover high-frequency detail information well, and 
more importantly, the color information is always close to the original images.

Fig. S1. Quantitative evaluation of different reconstruction methods in simulation. (a), (b) 
The PSNR and SSIM curves of the “bird”. (c), (d) The PSNR and SSIM curves of the 

“STOP”.

2. Quantitative evaluation of the proposed method using different 
denoising algorithms in simulations

Due to the flexibility of the PnP-GAP algorithm, different denoising algorithms can be 
replaced during the iterative loop to produce different results. Therefore, it is crucial to 
test the performance of the proposed method under different denoising algorithms. Four 
denoising algorithms, bilateral filtering [2], wavelet filtering [3], TV [4], and FFD-Net 
[5], are used as denoising priors in the PnP-GAP to reconstruct the color image “bird”. 
Embedded in the PnP-GAP algorithm is still the deep demosaicking network DDN. The 
PSNR and SSIM of the reconstructed images at different SRs are shown in Fig. S2. 
Different denoising algorithms do not change the trend that the larger the SR, the better 
the quality of the reconstructed images. The four denoising algorithms can obtain 
high-quality reconstruction results at full sampling, with PSNR above 20 and SSIM 
above 0.8. Among them, the reconstruction quality of the bilateral filtering method is the 
worst, but its quality decreases slowly, and it is obviously better than the wavelet 
denoising algorithm when the SR is lower than 0.3. PnP-GAP based on TV denoising 
priors outperforms both significantly. At the SR of 0.0625, PSNR is 8 higher than 
bilateral filtering and SSIM is 0.2 higher. However, using the pre-trained deep denoising 
network significantly outperforms the other three algorithms at every SR. There is also 
less reduction in image quality due to lower SR. Traditional model-based denoising 
algorithms apply hand-crafted image priors, which lack applicability to image structures 
with complex features, and the applicable noise types are relatively single. In contrast, 
pre-trained FFD-Net utilizes a large set of data for training and more effectively extracts 
prior information from images. It can handle different noise levels and spatially variant 
noise more flexibly.



Fig. S2. Quantitative evaluation of the proposed method using different denoising 
algorithms in simulation. (a) The PSNR curve. (b) The SSIM curve.

3. Quantitative evaluation of the proposed method using different 
demosaicking algorithms in simulations

Similarly, the color image “bird” is reconstructed by embedding different demosaicking 
algorithms into the PnP-GAP to compare their reconstruction performance. Four different 
demosaicking algorithms, bilinear interpolation [6], Malvar (2004) [7], Menon (2007) [8], 
and DDN are used to recover the color information of the images. The denoising prior 
used in PnP-GAP is all FFD-Net denoising algorithm. The PSNR and SSIM of the 
reconstructed images at different SRs are shown in Fig. S3. The different demosaicking 
algorithms do not seriously degrade the reconstruction quality of the images. When the 
SR is as low as 0.0625, the PSNR can reach above 14, and the SSIM can reach above 0.6. 
Among them, the classical bilinear interpolation demosaicking algorithm has the worst 
reconstructed image quality. The reconstruction results using the DNN-based 
demosaicking algorithm are significantly better than the other three algorithms, which 
significantly improves the image quality. Most of the traditional demosaicking algorithms 
are based on hand-crafted priors, and there will be some inevitable visual artifacts in the 
reconstruction, thus reducing the image quality. However, the powerful DNN model 
allows us to learn the adaptively demosaicking priors directly from a large number of 
training images rather than learning or predefining some hand-crafted priors, which 
enables better performance on demosaicking tasks. 

Fig. S3. Quantitative evaluation of the proposed method using different demosaicking 
algorithms in simulation. (a) The PSNR curve. (b) The SSIM curve.

4. Quantitative evaluation of different color CGI reconstruction algorithms 
in optical experiments

To quantitatively evaluate the reconstruction performance, the PSNR and SSIM of the 
reconstructed images in different algorithms are calculated separately for “SDU”. The 
curves are shown in Fig. S4. The PSNR and SSIM of the reconstructed images obtained 
by the classical correlation-based CGI algorithm are in a relatively low range. Due to the 



simple image structure and color distribution of the letters “SDU”, the evaluation curves 
obtained by CSGI and conventional PnP-GAP algorithms are not much different. The 
evaluation curves obtained by the proposed method are in the highest position. The PSNR 
is higher than 20, and the SSIM is all above 0.6. The curves prove that the proposed 
method has the best performance in color CGI experimental reconstructions. In addition, 
the lack of color correction will also degrade the image quality to some extent.

Fig. S4. Quantitative evaluation of different reconstruction methods in experiments. (a), 
(b) The PSNR and SSIM curves of the “SDU”.
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