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1. Transmission in the EIM effect

In this section, it is shown how Eq. (5) is found from the Maxwell’s equations [1]. A schematic
of the arrangement is shown in Fig. 1. The signal beam is traveling in the positive 𝑧 direction
whereas the normal vector (n̂) of the surface of the metal is directed in the opposite direction.
The Maxwell equations can be used to find the electric E and magnetic B fields of the signal
beam inside the metal:

∇ × E(r, 𝑡) = −𝜕B(r, 𝑡)
𝜕𝑡

, (1)

and
∇ × H(r, 𝑡) = J(r, 𝑡) + 𝜕D(r, 𝑡)

𝜕𝑡
. (2)

Take harmonic time dependence, i.e., E(r, 𝑡) = E(r)𝑒𝑖𝜔𝑡 and B(r, 𝑡) = B(r)𝑒𝑖𝜔𝑡 , then

∇ × E(r, 𝑡) = −𝑖𝜔B(r, 𝑡), (3)

and
∇ × H(r, 𝑡) = 𝜎E(r, 𝑡) + 𝑖𝜖0𝜔E(r, 𝑡). (4)

The DC conductivity of gold is 𝜎o ∼ 107 Ω−1𝑚−1 [2] and 𝜖0𝜔 ∼ 102 − 103, and thus, the second
term in Eq. (4) can be neglected.

Fig. 1. Coordinate system used to solve the Maxwell equations.

The field variation in the propagation direction is much more significant than in the 𝑥-𝑦 plane,
leading to the following approximation:

∇ = −n̂
𝜕

𝜕𝑧
, (5)

and so
Ec = − 1

𝜎

𝜕

𝜕𝑧
(n̂ × Hc), (6)



and
Hc = − 𝑖

`0𝜔

𝜕

𝜕𝑧
(n̂ × Ec), (7)

where Ec and Hc are the electric and magnetic fields inside a good conductor. From Eqs. (6) and
(7), it is clear that n̂ · Hc = 0 and n̂ · Ec = 0. Taking a partial 𝑧 derivative of both sides of Eq. (6)
gives:

𝜕Ec
𝜕𝑧

= − 1
𝜎

𝜕2

𝜕𝑧2 (n̂ × Hc). (8)

Also, the cross product of Eq. (7) and n̂ results in:

n̂ × Hc = − 𝑖

`0𝜔

𝜕

𝜕𝑧
[n̂ × (n̂ × Ec)] =

𝑖

`0𝜔

𝜕

𝜕𝑧
[n̂(n̂ · Ec) − Ec] = − 𝑖

`0𝜔

𝜕Ec
𝜕𝑧

. (9)

Combining Eq. (8) and Eq. (9) and noting that 𝛿 =
√︁

2/`𝜔𝜎 is the skin depth and rearranging,
we find that

𝜕2

𝜕𝑧2 (n̂ × Hc) +
2𝑖
𝛿2 (n̂ × Hc) = 0. (10)

The solution to Eq. (10) can be found to be

n̂ × Hc = C1𝑒
𝑖𝑧
𝛿

√
2𝑖 + C2𝑒

− 𝑖𝑧
𝛿

√
2𝑖 . (11)

Because
√
𝑖 = 𝑒

𝑖 𝜋
4 , we then see that

n̂ × Hc = H | |𝑒
− 𝑧

𝛿 𝑒
𝑖𝑧
𝛿 . (12)

Note that C2 = 0 due to the boundary condition requirement at infinity, and C1 = H | | . Also,
n̂ × Hc is parallel to the surface of the metal, which is why the first term on the right hand side of
Eq. (12) is labeled as such. From Eq. (6) and Eq. (12), we can find Ec to be

Ec =

√︂
`0𝜔

2𝜎
(1 − 𝑖)H | |𝑒

− 𝑧
𝛿 𝑒

𝑖𝑧
𝛿 . (13)

Equation (13) shows that the electric field decays exponentially in the metal as expected and
there is a propagation phase shift. The magnitude of the phase shift depends on the skin depth
and the thickness of the metal. Recall that the change in electron density results in modification
of the skin depth. So, aside from the exponential decay that was considered in calculating Δ𝑇 ,
the phase shift should be considered as well. This is straightforward to do, we can write:

𝐼 tra
1 (_) = 𝐼s (_)

{
exp

[
− ℓ

𝛿(_) − Δ𝛿(_)

]
exp

[
𝑖ℓ

𝛿(_) − Δ𝛿(_)

]
+ exp

[
− ℓ

𝛿(_) + Δ𝛿(_)

]
× exp

[
𝑖ℓ

𝛿(_) + Δ𝛿(_)

]} {
exp

[
− ℓ

𝛿(_) − Δ𝛿(_)

]
exp

[
𝑖ℓ

𝛿(_) − Δ𝛿(_)

]
+ exp

[
− ℓ

𝛿(_) + Δ𝛿(_)

]
exp

[
𝑖ℓ

𝛿(_) + Δ𝛿(_)

]}∗
,

(14)

and
𝐼 tra
0 = 𝐼s

(
2𝑒−ℓ/𝛿𝑒𝑖ℓ/𝛿

) (
2𝑒−ℓ/𝛿𝑒𝑖ℓ/𝛿

)∗
= 4𝐼s𝑒−2ℓ/𝛿 , (15)

Equation (14) can be simplified and rewritten as

𝐼 tra
1 = 𝐼s

[
exp

(
−2ℓ

𝛿 − Δ𝛿

)
+ exp

(
−2ℓ

𝛿 + Δ𝛿

)
+ 2 exp

(
−2ℓ𝛿

𝛿2 − Δ𝛿2

)
cos

(
2ℓ Δ𝛿

𝛿2 − Δ𝛿2

)]
, (16)

which is Eq. (5) in the article.



2. Thickness dependent conductivity

At the nanoscale, intrinsic properties can become size dependent. For resistivity and conductivity,
this can be explained as follows. The surface-to-volume ratio for a nanoscale sample (of metal)
is much larger compared to the bulk. So, electrons that are scattered off the sample surface
play an important role in the resistivity and conductivity. This also means that the effect of the
surface roughness must be included in any model that describes the resistivity and conductivity
of thin-film samples. Many experimental and theoretical studies show that the resistivity of a thin
film sample increases when the sample thickness is decreased [3]. This means a decrease in the
conductivity because conductivity is the inverse of resistivity. In the following discussion, only
the thickness dependent conductivity is considered since this is what is used in the EIM model.

We use the model discussed in Ref. [3] to find the conductivity of the samples. The conductivity
of thin films, 𝜎𝑡 𝑓 , can be estimated from the conductivity of the bulk, 𝜎b, as

𝜎𝑡 𝑓 = 𝜎b

{
1 − 3

2Λ

∫ 1

0

[
𝑢 − 𝑢3] [1 − 𝑝(𝑢)] 1 − exp (−Λ/𝑢)

1 − 𝑝(𝑢) exp (−Λ/𝑢) 𝑑𝑢
}
, (17)

whereΛ is the ratio between the sample thickness ℓ and the mean free path of conduction electrons.
Based on the Fermi velocity of ∼ 1.4×106 m/s and relaxation time of ∼ 15 fs for gold [4], the
mean free path is estimated to be ∼ 20 nm. In what follows 𝑝(𝑢) = exp

{
− [(4𝜋ℎ)/(_𝐹𝑢)]2},

where _𝐹 is the Fermi wavelength. Note that 𝑝(𝑢) has an explicit dependence on the sample
surface roughness ℎ. Using Eq. (17), the thickness dependent conductivity assuming three
different sample surface-roughness values is calculated. The result is shown in Fig. 2. For 5 Å,
the conductivity is higher compared to the samples with more rough surfaces. Based on Fig.
2, there is a small conductivity difference between samples with surface roughness of 10 Å.
As mentioned, the roughness of the samples in the experiment is expected to be approximately
± 10 Å. Consequently, we do not expect the difference in conductivity for different sample
roughness values to significantly affect EIM.

Fig. 2. Thickness dependent DC-conductivity of gold films calculated using the
theoretical model discussed in Ref. [3]

In order to check this conclusion, Δ𝑇 as a function of sample thickness is shown in Fig. 3 for
two sample roughness values of 10 Å and 20 Å. The model predicts the same EIM effect for the
two roughness values. This also shows that the qualitative prediction of the EIM model may be
valid if the conductivity has the same general behavior but with different values of conductivity.

We note that while the FS model predicts the behavior of conductivity for thin samples correctly,
it yields smaller values of conductivity compared to the experimental values. Corrections have
been applied to the FS model to resolve this issue. However, we do not expect this to significantly
affect the general behavior of the EIM effect as a function sample thickness.



Fig. 3. EIM effect calculated for two surface roughness values of 10 Å and 20 Å in
(a). No significant difference can be seen at this scale. In (b) is the same as (a) but
zoomed-in to reveal the slight difference between the curves.
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