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To analyze the near-field coupling between two metasurfaces layers in detail, we decompose
the proposed bi-layer metasurface [see Fig. 1(b)] to a four-layer system, as presented in Fig.
13(a). In the four-layer system, layer 1 and layer 2 (layer 3 and layer 4) are respectively spaced
by an air gap with thickness of #, (#=0). When this four-layer system is normally illuminated
by a x-polarized plane wave, each metasurface layer will generate induced currents, as
presented in Fig. S1(b). According to ref. [1], the induced current density vector ( 7, (p.@)) of

layer p (p=1,2,3,4) is denoted as
Ji(p,®) = c,(w)J1(p)

J2(p,) = (@)Y T2(p = p))
. . (S
J3(p.0) = (@)X T2 (p - p)

Ja(p,0) =c () J1(p)
where Ji(p) is the induced current density vector on the metal strip along the x-direction, and

Z}z(p—p/) (=1, 2,3, 4) is the induced current density vector on Jerusalem-cross-like
7

resonator [see layer 2 in Fig. S1(b)]. It is noted that ¢,,_, , (@) is frequency-dependent complex

amplitude coefficient, 35(5:1.2>(,0) is the spatial profile of current, and 0,534 1s the position

of the Ith scatterer. The currents } 1(p) and j 2(p-p,) are independent of @ and they can be

solved by using the eigenmode solver in commercial software CST Microwave Studio.
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Fig. S1. (a) The decomposed four-layer metasurface. (b) Surface current distributions of layer 1
and layer 2. (c) The equivalent circuit model of the four-layer system.

The self-impedance in Fig. S1(c) can be written as
ot [l )
2

q

g #(0.0) (Y; +)/;)2-(Y;-Y2) et (S2)
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and the mutual impedance can be written as



Z;z = Z;I = Z;A = Z:tz
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where g, is the propagation constants of mmth harmonics(m,n=0,), ¥, and¥’ is the

mn

admittance of the Floquet harmonic in free space and in dielectric layer, respectively. For TM
harmonics, Z ¢ = (kw Zx+ k,, Zy j / / kfn + kim , and for TE harmonics,

ey =(kym ex—k, ey j / kf" +ik2 . J 1(] zjis the Fourier transform of the current on layer

ym
1(layer 2),
Jilk,)=[ Jip)e"dp (S4)
Similar to Eq. (2) in Main Text, equivalent voltages ¥, and i, (n = 1, 2, 3, 4) are also

denoted by the near-field impedance matrix [Z |,

il [z, z, z, zJ %] [% ¥ v W
N A (AR 55
i} Z}l Z}Z ZBS 234 I/S YS] Y32 Y;;} YS4 I/B
i) 2y Zy Zy Zy] V] Y Yo Yo YV

Owing to +,-0, layer 1 and layer 2 are overlapped. Hence the voltage ¥, is approximately

equal to ¥,. Similarly, ¥,=V, . In this case (S5) can be written as

i Y, Y, Y, Y ||V
i Y, Y., Y. Y, |V
I A | R S (S6)
Iy Y, Y, Y, Y, ||V,
| Y Yo Yo YullV,

Through a simple calculation process, Eq. (S6) can be reduced into a 2 x 2 matrix.

: . -] [ e e ' 2 e - '
[zanz [ Y.;MVIHZJ Z} H (S7)
i Lt (0ol Lz zEl n)

GV AV AV 2V VI—_V oV .V ’ _V .V Y
where =Y +Y,+%+Y,, X =Y+, + Y+ Y, T =Y, + Y, +Y, +Y,, and

Yy =Y, +Y, +Y,+Y,. Actually, Eq. (S6) is identical with Eq. (2). The currents I, and i, are
respectively equal to i, and i,in Eq. (2). Correspondingly, the voltages ¥, and V, are

. )AL A< I Y, Y,|.
respectively equalto v, and v,,and | !! 2 | isequalto | "' ' |in Eq. (2). Up to now the [Z]
) VA o3 r, L

matrix presented in Eq. (2) can be obtained from the [Y } matrix shown in Eq. (S5). Unlike

those reported methods, we can obtain the S parameters of multilayer metasurfaces only by



calculating the current distributions of each single-layer metasurface, thereby effectively
decreasing the requirement of computer.
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