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Probing coherence Stokes
parameters of three-component light
with nanoscatterers: supplemental
document
This supplementary document provides detailed derivations of the difference between the dis-
tances from the dipoles to the far-zone point as well as Eqs. (16a)–(16i) appearing in the main
text.

DERIVATION OF DISTANCE DIFFERENCE

Suppose that the two dipoles are located symmetrically about the origin along the x axis with
separation d = 2a (see Fig. 1). In the Cartesian coordinate frame we then have r1 = (−a, 0, 0),
r2 = (a, 0, 0), and r = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ), where r = |r|. Hence,

r1 =
√
(r sin θ cos ϕ + a)2 + (r sin θ sin ϕ)2 + (r cos θ)2

= r

√
1 +

( a
r

)2
+ 2

a
r

sin θ cos ϕ. (S1)

Since r � a, we can neglect the second term and use (1 + x)1/2 ≈ 1 + x/2 to obtain

r1 ≈ r
(
1 +

a
r

sin θ cos ϕ
)
. (S2)

In a similar way we find that

r2 =
√
(r sin θ cos ϕ− a)2 + (r sin θ sin ϕ)2 + (r cos θ)2

≈ r
(
1− a

r
sin θ cos ϕ

)
. (S3)

Equations (S2) and (S3) imply at once that

k(r1 − r2) ≈ 2ka sin θ cos ϕ = kd sin θ cos ϕ, (S4)

which was employed in the discussion above Eq. (14) of the main text.

DERIVATION OF EQUATIONS (16a)–(16i)

The three observation directions (θ, ϕ) under consideration are (π/2, 0), (π/2, π/2), and (0, π/2),
as illustrated in Fig. 2.

Direction (π/2, 0): From Eqs. (5) and (6) one finds that E′θ(ri, ω) = −Ez(ri, ω) and E′ϕ(ri, ω) =

Ey(ri, ω), which are the field components at the dipole location ri along the ûθ and ûϕ directions,
respectively. Thus the elements of the dipole-site 2× 2 cross-spectral density matrix constructed
from the components transverse to the direction (π/2, 0) are related to the Cartesian-system
elements as W ′(12)

θθ W ′(12)
θϕ

W ′(12)
ϕθ W ′(12)

ϕϕ

 =

 W(12)
zz −W(12)

zy

−W(12)
yz W(12)

yy

 , (S5)

where the superscript (12) refers to points r1 and r2. Using Eqs. (13a), (13c), and (13d) then yields

S′(12)
0 (

π

2
, 0) = W(12)

zz + W(12)
yy , (S6)
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2 (
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2
, 0) = −[W(12)
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zy ], (S7)
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yz −W(12)
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On further substituting Eqs. (S7) and (S8) into Eqs. (2g) and (2h), respectively, one finds

Λ(12)
6 = −S′(12)

2 (
π

2
, 0), (S9)

Λ(12)
7 = S′(12)

3 (
π

2
, 0), (S10)

which are Eqs. (16g) and (16h) of the main text.
Direction (π/2, π/2): Now E′θ(ri, ω) = −Ez(ri, ω) and E′ϕ(ri, ω) = −Ex(ri, ω), whereuponW ′(12)
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The use of Eqs. (13a), (13c), and (13d) subsequently results in
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By then inserting Eqs. (S13) and (S14) into Eqs. (2e) and (2f), respectively, one obtains
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which are Eqs. (16e) and (16f) of the body text.
Direction (0, π/2): In this case E′θ(ri, ω) = Ey(ri, ω) and E′ϕ(ri, ω) = −Ex(ri, ω). Therefore,W ′(12)
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and following a similar procedure as above leads to
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Comparing Eqs. (S19) and (S20) with Eqs. (2b) and (2c) finally reveals that
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which are Eqs. (16b) and (16c) of the paper.
Remaining relations: From Eqs. (2a), (2d), (2i) and (S6), (S12), (S18) one straightforwardly obtains

Λ(12)
0 =

1
2

[
S′(12)

0 (
π

2
, 0) + S′(12)

0 (
π

2
,

π

2
) + S′(12)

0 (0,
π

2
)
]
, (S23)
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which are Eqs. (16a), (16d), and (16i).
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