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1. CROSS-VALIDATION DATASETS

Table S1 provides the details of the datasets for each cross-validation group.

Table S1. Summary of the datasets used to train, validate, and test the CNN for each cross-
validation group. Percentages in brackets indicate the percentage of each set in each group
corresponding to each tissue class.

Class

Cross-validation Adipose Benign dense Malignant

group Set tissue tissue tissue Total

1 Training 2,170 (52.5%) 841 (20.3%) 1,122 (27.1%) 4,133

Validation 542 (52.5%) 210 (20.3%) 281 (27.2%) 1,033

Test 336 (52.7%) 93 (14.6%) 209 (32.8%) 638

2 Training 2,178 (51.6%) 828 (19.6%) 1,214 (28.8%) 4,220

Validation 544 (51.6%) 207 (19.6%) 303 (28.7%) 1,054

Test 326 (61.5%) 109 (20.6%) 95 (17.9%) 530

3 Training 2,157 (52.1%) 862 (20.8%) 1,121 (27.1%) 4,140

Validation 539 (52.1%) 215 (20.8%) 280 (27.1%) 1,034

Test 352 (55.9%) 67 (10.6%) 211 (33.5%) 630

4 Training 2,235 (54.2%) 788 (19.1%) 1,102 (26.7%) 4,125

Validation 559 (54.2%) 197 (19.1%) 275 (26.7%) 1,031

Test 254 (39.2%) 159 (24.5%) 235 (36.3%) 648

5 Training 2,227 (52.7%) 846 (20.0%) 1,155 (27.3%) 4,228

Validation 557 (52.6%) 212 (20.0%) 289 (27.3%) 1,058

Test 264 (51.0%) 86 (16.6%) 168 (32.4%) 518

6 Training 2,239 (52.4%) 854 (20.0%) 1,180 (27.6%) 4,273

Validation 560 (52.4%) 213 (19.9%) 295 (27.6%) 1,068

Test 249 (53.8%) 77 (16.6%) 137 (29.6%) 463

7 Training 2,167 (52.0%) 827 (19.8%) 1,174 (28.2%) 4,168

Validation 542 (52.0%) 207 (19.8%) 294 (28.2%) 1,043

Test 339 (57.2%) 110 (18.5%) 144 (24.3%) 593

8 Training 2,140 (51.2%) 843 (20.2%) 1,193 (28.6%) 4,176

Validation 535 (51.2%) 211 (20.2%) 298 (28.5%) 1,044

Test 373 (63.9%) 90 (15.4%) 121 (20.7%) 584

9 Training 2,156 (51.9%) 834 (20.1%) 1,163 (28.0%) 4,153

Validation 539 (51.9%) 208 (20.0%) 291 (28.0%) 1,038

Test 353 (57.6%) 102 (16.6%) 158 (25.8%) 613

10 Training 2,277 (54.6%) 714 (17.1%) 1,182 (28.3%) 4,173

Validation 569 (54.5%) 179 (17.1%) 296 (28.4%) 1,044

Test 202 (34.4%) 251 (42.8%) 134 (22.8%) 587

Total 3,048 (52.5%) 1,144 (19.7%) 1,612 (27.8%) 5,804
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2. RESNET-18 ARCHITECTURE

Figure S1 presents the architecture of the ResNet-18 CNN used in this study. This network
contains 18 layers (represented by the blocks), which includes eight “building blocks” that each
contain two 3 × 3 convolutional layers and a shortcut connection.
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Fig. S1. ResNet-18 architecture. Each block represents one layer. Colored blocks represent con-
volutional layers, with the text indicating the kernel size, the number of filters, and, if applica-
ble, the downsampling factor (achieved using a stride of 2). The white block represents a fully
connected layer, with the text indicating the number of outputs. Shortcut connections are indi-
cated by the curved arrow lines; dashed lines indicate where 1 × 1 convolutions with a stride
of 2 are used to match dimensions. The output sizes from layers that change the output size are
indicated on the left, where Nch represents the number of channels in the input image (Nch = 1
for the OCT network and the attenuation network, and Nch = 2 for the combined network).
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3. ATTENUATION NETWORK

This Section presents a comparison of the classification performance of the attenuation network
compared to the OCT network and the combined network. The architecture and training method-
ology for the attenuation network is identical to that of the OCT network (described in Section 2.2
of the main manuscript), except attenuation sub-images only are used for training, validation, and
testing. Table S2 shows the confusion matrix and classification performance of the attenuation
network, and Tables S3–S5 provide p-values for the two-sided Wilcoxon signed-rank test compar-
ing the OCT network and the attenuation network, the attenuation network and the combined
network, and the OCT network and the combined network, respectively.

Table S2. Confusion matrix and classification performance of the attenuation network on
the test sets. The confusion matrix entries are the sum of the confusion matrices from each
cross-validation group and the percentage of the true class. The sensitivity, specificity, PPV,
NPV, and accuracy for each class, and the total accuracy and MCC across all classes, are the
mean ± standard deviation across all cross-validation groups.

Attenuation network

Histopathology Adipose
tissue

Benign
dense tissue

Malignant
tissue

Sub-images 3,048 1,144 1,612

C
N

N
pr

ed
ic

ti
on Adipose tissue 2,922

(95.9%)
97

(8.5%)
68

(4.2%)

Benign dense tissue 76
(2.5%)

690
(60.3%)

283
(17.6%)

Malignant tissue 50
(1.6%)

357
(31.2%)

1,261
(78.2%)

Sensitivity (%) 95.9± 2.2 60.0± 16.5 79.0± 10.2

Specificity (%) 93.8± 4.0 92.4± 5.2 90.3± 7.0

PPV (%) 94.5± 3.5 67.0± 12.2 76.7± 13.0

NPV (%) 95.3± 2.5 90.3± 7.8 91.9± 4.7

Accuracy (%) 95.0± 1.8 86.0± 5.3 87.1± 5.4

Attenuation network

Total accuracy (%) 84.1± 5.5

MCC 0.741± 0.064
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From Table S3, we see a statistically significant difference in performance between the OCT
network and the attenuation network in sensitivity, NPV, and accuracy in adipose tissue, as
well as in accuracy in malignant tissue. Comparing Table S2 to Table 3, we see that while the
attenuation network accuracy in malignant tissue is higher than that of the OCT network by
1.6%, the OCT network outperforms the attenuation network across all adipose tissue metrics
by ∼1%. This may be because the algorithm for computing the attenuation coefficient involves
fitting a curve to the OCT signal with depth, however, the OCT signal in adipose tissue consists
of regions of low signal (from the lipid-filled interior of adipose cells) interrupted by sharp peaks
(from the cell boundaries), which makes curve fitting challenging and may cause erroneous
results. Therefore, while attenuation imaging may provide more contrast in dense tissue, OCT
may provide more contrast in adipose tissue. As a result, between the OCT network and the
attenuation network, neither network may be considered dominant across all metrics.

Table S3. p-values for the two-sided Wilcoxon signed-rank test applied to the performance
metrics of the OCT and attenuation networks. The null hypothesis is that the median of the dif-
ferences Xi − Yi is zero, against the alternative that it is not zero, where Xi is the performance
on Group i for the OCT network, and Yi is the performance on the same group for the attenua-
tion network. Asterisks indicate a statistically significant difference (α = 0.05).

X = OCT network, Y = Attenuation network

Histopathology Adipose tissue Benign dense tissue Malignant tissue

Sensitivity 0.0195* 0.8457 0.1055

Specificity 0.1309 0.6953 0.3074

PPV 0.1055 0.8457 0.4316

NPV 0.0098* 0.6953 0.0645

Accuracy 0.0059* 0.3223 0.0273*

X = OCT network, Y = Attenuation network

Total accuracy 0.3750

MCC 0.6953
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From Table S4, we see a statistically significant difference in performance between the attenua-
tion network and the combined network in accuracy in adipose tissue, as well as sensitivity in
benign dense tissue. Comparing Table S2 to Table 3, we see that the combined network outper-
forms the attenuation network by 1.2% for accuracy in adipose tissue, and 8.0% for sensitivity in
benign dense tissue. Similarly, as shown in Table S5 and discussed in Section 3, the combined
network outperforms the OCT network across several metrics in benign dense tissue and ma-
lignant tissue, as well as total accuracy and MCC across all classes. Therefore, using OCT and
attenuation imaging together in the combined network yields better results than using either OCT
or attenuation imaging individually in the OCT network or the attenuation network, respectively.

Table S4. p-values for the two-sided Wilcoxon signed-rank test applied to the performance
metrics of the attenuation and combined networks. The null hypothesis is that the median of
the differences Xi − Yi is zero, against the alternative that it is not zero, where Xi is the perfor-
mance on Group i for the attenuation network, and Yi is the performance on the same group
for the combined network. Asterisks indicate a statistically significant difference (α = 0.05).

X = Attenuation network, Y = Combined network

Histopathology Adipose tissue Benign dense tissue Malignant tissue

Sensitivity 0.0662 0.0371* 0.4316

Specificity 0.0645 0.4922 0.3223

PPV 0.0645 0.4922 0.1309

NPV 0.1309 0.0840 0.3750

Accuracy 0.0098* 0.3223 0.4726

X = Attenuation network, Y = Combined network

Total accuracy 0.1934

MCC 0.0840

Table S5. p-values for the two-sided Wilcoxon signed-rank test applied to the performance
metrics of the OCT and combined networks. The null hypothesis is that the median of the dif-
ferences Xi − Yi is zero, against the alternative that it is not zero, where Xi is the performance
on Group i for the OCT network, and Yi is the performance on the same group for the com-
bined network. Asterisks indicate a statistically significant difference (α = 0.05).

X = OCT network, Y = Combined network

Histopathology Adipose tissue Benign dense tissue Malignant tissue

Sensitivity 0.8762 0.0107* 0.5566

Specificity 0.3583 0.6953 0.0273*

PPV 0.4142 0.1934 0.0137*

NPV 0.9187 0.0059* 0.3750

Accuracy 0.6831 0.0039* 0.0020*

X = OCT network, Y = Combined network

Total accuracy 0.0039*

MCC 0.0273*
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