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Let us consider the total electromagnetic field with the following form
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and the electrical polarization as
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in the general Maxwell’s Eq. (10). Here, x2 + y2 = r2 represents the radial distance

from the center of beam. Under the slowly varying envelope approximation, Eq. (10) for
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with
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By substituting the wave number k = ωp/c into Eq. (3), the above equation reduces to
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Since the bottom index of the associated Laguerre polynomial is a positive integer, we have

used the associated Laguerre polynomial recurrence relation as Lk
n(x) = Lk+1

n (x)−Lk+1
n−1(x).
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The required associated Laguerre polynomials recurrence relations are
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Substituting Eq. (5) in Eq. (4), the following relation is obtained
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By simplifying Eq. (6), the dynamics response of the probe field is obtained by
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where P (ωp) defines the induced polarization in the transition |1⟩ ↔ |3⟩ and is given by

P (ωp) = Nµ31ρ31. (8)
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For a single circulation of the probe field in the cavity, it can be denoted by Ep(0) and

Ep(L) at the entrance and exit planes of the sample, respectively (see Fig. 4(b)). For

a perfectly tuned cavity, the boundary conditions in the steady state limit between the

incident field EI
p and the transmitted field ET

p can be written as
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It is deduced from Eq. (9) that the feedback mechanism due to the reflection from the

mirrors is responsible for bistability. Substituting Eq. (8) into Eq. (7) and integrating Eq.

(7) on the length of the atomic medium, we obtain∫ Ep(L)
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After solving the above integrals,
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and using the boundary conditions, Eq. (10) reads to
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and using definitions of cooperative parameter of atoms, C, normalized input, Y , and output,

X, fields, the general expression of the OB phenomenon is obtained, Eq. (11).
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