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S-1. POLYGONAL ENCODING OF METASURFACE GEOMETRY15

The polygon is specified by its vertices in a curvilinear coordinate system in terms of r, α and θ, where r represents the distance from16

the centre of the unit-cell, α is the angle of the last point. The angles θ depict a point’s angle with respect to it’s previous point. The17

angles θ sum up to α, they are chosen according to θi =
φi

∑n
i=1 φi

α where φi are the weights. Thus, the 1D tensor that constitutes of the18

values of r, φ and α define the geometry of the metasurface unit cell. Taking fabrication feasibility into account, the values of r and φ19

are chosen as follows: 25nm < r1, r2, ....., rn < p/2− 25nm, (p = periodicity), 20 < φ1, φ2, ....., φn < 100. For 8-fold, 4-fold and 2-fold20

symmetric structures and asymmetric structures, α values are chosen as 45°, 90°, 180° and 360° respectively. For x-fold symmetric21

structures, the vertices are folded x-times to define the full polygon. The shapes are processed through a 2D interpolation to smooth22

the sharp edges as discussed in [1]. For robust designs, the perturbed geometries are also considered using the Taguchi’s orthogonal23

array method as reported in [1].24

The task was to minimize the mean square error between the transmission spectrum and the Color Matching Function of the25

target color. The optimization problem was defined as an optimization problem with solution vector length 2n+1 (n is the number26

of points defined). For a metasurface unit cell with periodicity of p and with N number of wavelength samples the problem can be27

mathematically defined as follows.28

min y = f (−→x ) (1)

Here,29

f (−→x ) =
1
N

700nm

∑
λ=400nm

[ S(λ)− T(λ) ]2, (2)

where S is the transmission spectrum of the design and T is the target spectrum. The target spectrum to design color filters is a scaled30

version of the color matching function (CMF) of target color.31

S-2. DNN MODEL32

We have taken the help of a Deep Neural Network (DNN) to establish the empirical relationship between the geometrical parameters33

and correspoinding optical characteristics as shown in figure S-1A. The Stanford Stratified Structure Solver (S4) tool [2] which uses the34

RCWA technique along with S-matrix algorithm to solve Maxwell’s equations in layered periodic structures was used for ground truth35

generation (determining the optical characteristics of the structures). The networks’ training was performed in the Keras deep learning36

platform with a Tensorflow backend on a workstation with an Intel™ i9–7920X CPU with an NVIDIA™ GeForce GTX 1080 GPU card37

with 128 GB memory.38

For ground truth generation, random samples are selected from the design space with uniform probability distribution (example39

shown in inset of figure S-1B). Once selected, the samples are then labelled with respective transmittance/reflectance spectra. Training40
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Fig. S-1. Learning model creation and surrogate optimization. A: A deep neural network (DNN) model of the structure which
predicts the transmitted and reflected power over a wavelength range for a given geometry. Statistical comparison of validation
error (MSE) for learning models are shown with B: increasing training dataset sizes (inset shows the probability distribution of
the training data) and C: increasing the number of hidden layers (inset shows the network architecture). D: Prediction capability
of final learned DNN demonstrated by comparing the true and predicted transmission and reflection spectra of some example
structures (geometries given in insets). E: Flowchart of a typical DE optimizer with two given choices for function evaluation: (1)
Using S4 for DE_S4 and (2) DNN model for DE_NN.
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Fig. S-2. Surrogate optimization of polygonal meta-atom geometries for attaining various functionalities. The periodicity of the
metasurfaces was kept constant to 380 nm. The results of typical and surrogate optimizations are compared.
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Fig. S-3. Performance of DNN for prediction of higher dimensional geometries. Figure shows the comparison between the actual
and DNN-predicted spectra of 7-sided asymmetric polygon (dimensionality of parameter vector = 15) for s-polarized excitation.
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datasets of different sizes (Strain), starting from 6K and doubling until 200K, are used to train a DNN model. The batch size was fixed41

to 128 throughout. The experiments were repeated 10 times and the statistical comparison is plotted in figure S-1C. It can be observed42

that the performance (in terms of mean of squared validation error) of the training model saturates for Strain more than 100K. Therefore,43

Strain was fixed to 100K for further studies. Unit cell periodicities between 200 nm and 400 nm were discretized with 20 nm spacing.44

For each of the periodicity, 100K geometries were randomly selected and labelled with their optical characteristics (ground-truth). The45

S4 tool was used for the ground truth generation and required ≈50 hours (≈5 hours for each periodicity). The DNN models training46

takes ≈15 minutes for each periodicity.47

A simple feed-forward network architecture with a Sigmoid activation function at the end (shown in insets of figure S-1C) was48

considered for learning. The number of hidden layers (Nlayers) in the network are increased from 5 to 30 as shown in figure S-1C. A49

performance degradation can be observed after Nlayers = 20. This performance degradation can be attributed to the vanishing gradient.50

Thus the number of hidden layers (Nlayers) are fixed to 20 for rest part of this work. The number of neurons in each layer was fixed to51

256 throughout the study. The trained models exhibited a validation error in the order of 1e-5 suggesting near ideal prediction. The52

predicted and true transmittance and reflectance of some example structures along with the geometry are given in figure S-1D. The53

predicted spectra are observed following the true spectra excellently; suggesting a great prediction ability of the learned model.54

S-3. OPTIMIZATION VIA DIFFERENTIAL EVOLUTION (DE)55

Differential Evolution (DE) is a stochastic optimization technique that takes a random population as its initial population and performs56

mutation and crossover in order to produce the next generation solutions [3, 4]. The parent solutions are compared with the offsprings57

and the solution with best fitness value is promoted for the next generation. The DE used here is an island based technique, where58

multiple populations are created parallelly and are simultaneously evolved in order to provide a pool of best-fit solution vectors.59

Figure S-1E shows the flow-chart of the island-based DE used for optimization along with details of DE hyperparameters. When the60

DE optimizer uses the DNN model for function evaluation, it is termed as a surrogate optimization as shown in the flow-chart.61

The radii (r), angle weight (φ) and maximum angle (α) make a solution vector, which represents an individual. In the optimization62

of polarization-independent color filters, only 8-fold symmetric structures are considered. As the number of points per octant is kept63

constant to 3, the length of each solution vector is 7. Each generation consists of Ni number of islands and each island has Np number64

of populations. As per convention, the value of Np is kept between 5 to 10 times of the number of variables (Here between 35 and 70).65

In each island, the evolution starts from a randomly generated population that are potential solutions to the metasurface design. A66

test population is also generated in order to compare the fitness with the island’s offspring and to take part in the selection process.67

The target is to match the transmission spectrum of the metasurface with the CMF of a particular color; thus the fitness is the mean68

square error between the spectrum and the CMF.Each generation has 20 iterations where Mutation, Crossover and Selection takes69

place. In DE, the mutation takes place first to initiate the genetic diversity in the current pool, then a mutant solution is recombined70

(Crossed-over) with another solution (that has no part in creating the mutant) in order to generate the offspring. Then best fit solution71

between parents and offspring is forwarded to the next pool. For both direct and surrogate DE optimizer, the DE schemes used are72

DE/rand/1/bin for exploration and DE/best/1/bin for exploitation. It was observed that the convergence was fastest when the73

mutation rate was mr = 0.4 and the crossover probability was cp = 0.5.74

Along with the surrogate optimization of transmission-mode RGB and CMY color filter arrays provided in the manuscript, the75

learned models can be used to optimize metasurface geometries to obtain a wide variety of other target functionalities. As shown in76

figure S-2, a single learned model that learns the transmittance and reflectance of polygonal metasurface with 380 nm lattice can be77

implemented in the inverse design of a number of transmission, reflection and absorption-mode filters. A great deal of similarity can be78

observed between DE_S4 and DE_NN optimized geometries and their respective spectra. The duration of optimization for surrogate79

DE and typical DE was 100 seconds and 72 minutes respectively. Therefore, the design exploration for multiple functionalities in a80

single surrogate model can effectively amortize the computational cost invested during the model creation.81

The design, simulation and optimization were run in a system with following specifications. Processor : Intel™ i9–7920X; Number82

of cores: 32, RAM : 128 GB. The solutions satisfied the convergence criteria within 10 generations (20 iterations each).83

A. Design for robustness84

In order to overcome the fabrication difficulty, the structure that are robust in nature are considered for designing the filters. Robust85

nanostructures are designed by inducing perturbation errors of ± 10nm for all radius values and preserve the color for all perturbed86

designs. In order to achieve this, the DE algorithm was used to minimize the variance between spectra obtained by the perturbed87

structures [1]. Total of perturbed structures are selected with the help of Taguchi’s orthogonal array. The objective function considered88

for optimization to design a robust structure is as follows.89

f (−→x ) = η1 + κ × η2 (3)

Here η1 is the Mean Squared Difference between the mean of the transmission spectra of all perturbed structures and CMF; η2 is the90

cumulative variances of all the perturbed designs from the original structures. A scaling factor κ was multiplied with η2 in order to91

keep the objective value of both functions comparable.92

B. Prediction of higher dimensional geometries93

As the dimensionality of the geometrical parameter vector increases, the solution space explodes exponentially; making inverse design94

more and more difficult. In such scenario, learned model with good prediction accuracy become more beneficial as they make the95

design exploration faster. The DNN model proposed in this work can be beneficial in such scenarios.96
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In order to demonstrate the efficacy of proposed polygonal encoding and the learning ability of DNN for such encoding, we have97

considered the example of 7-sided asymmetric polygonal metasurfaces. For such geometry, the ’input’ to the DNN is a 15 dimensional98

parameter vector. The output is the transmittance and reflectance spectra for s-polarized incidence. The network was trained with a99

training dataset of size 100K. The predicted spectra given by the learned model are compared with the actual spectra and the results100

are demonstrated in figure S-3. A great deal of similarity can be observed between the predicted and actual spectra, suggesting good101

prediction capability of the DNN model.102
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