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Vernier optical phased array lidar
transceivers: supplementary material

This document provides supplementary information to “Vernier optical phased array lidar
transceivers." The supplementary material includes additional theoretical and numerical assess-
ment of the Vernier transceiver concept. It discusses the performance of the Vernier concept
relative to aperiodic designs, optimal lobe suppression design for arbitrary apodizations, and
additional considerations for wavelength-steered phased arrays.

1. COMPARISON TO APERIODIC ARRAYS

In order to provide a direct comparison between the grating lobe suppression offered by the
Vernier transceiver approach and aperiodic OPAs, we consider an example lidar system composed
of a single 1D TX OPA and adjacent RX OPA, both with 32 gratings. Four cases are considered
in conjunction with an example scene: a monostatic system using a periodic OPA, a monostatic
system using an aperiodic OPA, a bistatic system with non-identical aperiodic OPAs, and the
Vernier transceiver (bistatic, non-identical periodic OPAs). Note that the monostatic cases are also
equivalent to a bistatic system using identical TX/RX OPAs when the target is in the far-field of
the transceiver.

The aperiodic arrays are designed in accordance with [1], where a periodic array of waveguides
is placed with a uniformly random distribution between [3, 5] µm spacing to achieve the single
main lobe and flat, white noise background of the grating lobes. Different random distributions
are used between the TX and RX OPAs. The OPAs all have the same average pitch of 4 µm
between gratings, each grating being 500 nm wide, to provide a direct comparison. We note
here that an aperiodic array with a given minimum pitch will have a larger average pitch than a
periodic array with the same minimum pitch. For the Vernier case, the k = 2 condition is used
such that the RX OPA has only 30 gratings and a pitch of 4.27 = (32/30)4 µm.

The emission patterns of the 4 OPA designs are shown in Fig. S1. The aperiodic OPAs do not
exhibit strong grating lobes as in the periodic designs, at the cost of an approximately white
noise distribution of lobes across the entire hemisphere. The 32 grating design and unoptimized
random grating distribution of the aperiodic OPAs yields a 5-7 dB suppression of grating lobes
relative to the periodic OPAs. An ‘ideal’ aperture, for this case a uniform rect emission pattern
occupying the same area as the OPAs, is plotted for comparison. The intensity patterns for all
emission patterns are normalized to the peak intensity of the ideal aperture. For all OPA designs,
the main lobe experiences a -9 dB insertion loss relative to the ideal aperture due to emission into
the grating lobes.

The example scene used is shown in Fig. S2(a). The target is assumed to be in the far-field
of the lidar system and is composed of a constant background with low (1%) diffuse reflection
and three distinct targets: 1) a 100% reflectivity delta function at θ = 0◦, 2) a 50% reflectivity rect
at 22◦ (the grating lobe spacing), and 3) a one-sided triangle reaching up to 20% reflectivity at
−9◦. All targets are assumed to be diffuse, which is modeled by applying a random reflection
phase at each spatial pixel of the target scene. The received power is calculated using Eq. 5 from
the main text, normalized by the power received by the ideal aperture for the 100% reflectivity
delta function. The received power is calculated for 100 different iterations of random target
phases, while keeping the reflectivity constant, in order to average over the inherent intensity
fluctuations due to speckle. This example looks purely at the received power as a function of scan
angle, neglecting ranging operations, though received power in a lidar system should be directly
proportional to the values shown here.

The received power for each system configuration is shown in Fig. S2(b). The OPA-based
systems receive 18 dB less power than in the ideal aperture case, simply from paying the -9 dB
insertion loss penalty twice (once on transmit, a second time on receive). The monostatic periodic
OPA (or bistatic identical periodic OPAs) case shows clear evidence of grating lobe-induced
spurious signals, where the rect and delta functions are repeated three times within this FOV
and the triangle twice. In this case the target’s reflectivity, size, and location are all ambiguous,
highlighting the necessity for grating lobe suppression techniques. By contrast, both aperiodic
designs and the Vernier approach all significantly suppress these spurious signals (see for example
the highlighted regions, where no signal should exist). These suppression approaches also help
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Fig. S1. Emission patterns of example arrays. (a) Emission pattern across entire hemisphere in
linear (top) and log (bottom) scales. Note the random spurs arising for the aperiodic array. (b)
Main lobe. Note the more rapid fall-off of sidelobes for the aperiodic OPAs. (c) Grating lobe.
The aperiodic design suppresses the grating lobe by approximately 5 dB, and the different
aperiodic designs have different (randomized) lobe locations.

mitigate the effects of the low background reflectivity, improving SNR and target detection –
for the monostatic periodic OPA, the signals are only ∼ 10 dB above the background. Using a
grating lobe suppression approach, the signal level is essentially unchanged but the background
is reduced by 5–8 dB. We note that the bistatic aperiodic case, which to our knowledge has not
been explored in the literature, shows somewhat improved performance over the monostatic
aperiodic case. It can be seen that for all steering angles the k = 2 Vernier case provides superior
performance with lower background and reduced spurious signal without compromising on the
actual signal level. This advantage, a 1–2 dB reduction in background and spurious grating lobe
signals over the bistatic aperiodic approach, will likely be reduced with larger grating count OPAs
as the aperiodic designs are better able to avoid accidental ‘lobes’ as the grating count increases.

2. CHOICE OF OPTIMAL RX ARRAY

While in the body of the paper we restricted the RX array to have few gratings and larger pitch
than the TX array, and heuristically arrived at the condition to align the first grating lobe TX
peak with an RX null, we show here that these conditions can be arrived at by considering
the maximum grating lobe suppression. For a set of beams emitted by the TX array, and an
equivalent set of beams comprising the detection pattern of the RX array, we can evaluate the
overlap integral equivalent to the (power) detection efficiency of the mth TX beam with the nth

RX beam in transverse spatial frequency space as

ηm,n =

∣∣∣∣∫ ∞

−∞
d fxFm

TX( fx)Fn
RX( fx)

∣∣∣∣2 (S1)

where F( fx) denotes the field emission/reception pattern as a function of the transverse spatial
frequency, as in the main text. For periodically spaced emitters, the beams will also be spaced
periodically in the transverse spatial frequency domain. If the periods of the TX and RX arrays are
close, and considering beams near broadside, then the mth TX beam will only overlap significantly
with the mth RX beam, such that we can assume all ηm,n = 0 for n 6= m. In order to suppress
grating lobes we desire ηm,m = 0 for m 6= 0, requiring the overlap integral in Eq. Eq. (S1) to
evaluate to null.

Considering the same TX and RX apertures as in the main text, the offset ∆ fx(m) between the
mth beam pair centers is determined by their respective grating pitches for broadside emission as
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Fig. S2. Target scene and reconstructed image for each approach. (a) Far-field target scene, in-
cluding 3 distinct targets as well as a low, constant background reflectivity (1%). (b) Received
power as a function of beam-steering angle for all cases. The power is normalized to that re-
ceived by the ideal aperture for the 100% reflectivity delta function at broadside. Note the
spurious signals arising due to grating lobes highlighted in gold, as well as the non-zero back-
ground which varies between implementations.

∆ fx(m) = m
(

1
ΛTX

− 1
ΛRX

)
(S2)

and the overlap integral for the mth beam pair can therefore be written in angular space as∫ ∞

−∞
d fxsinc (WTX( fx − ∆ fx(m))) sinc (WRX fx) = 0 (S3)

where we have suppressed the amplitude scaling factors, set the RX beam to be centered at fx = 0,
and identified the aperture widths as Wi = NiΛi.

By choosing to set this integral to 0, rather than minimize the overlap function FRX FTX , we
have chosen to suppress grating lobes for the case of large targets – when all the transmitted
power intercepts the target and is reflected back – rather than point targets. In the large target
case, the signal is proportional to total power in the beam, so we desire to maximize the power
received from the main lobe and minimize the power received from other lobes (minimize the
overlap integral). For unresolved (point) targets, the signal is proportional to beam intensity
rather than power and in that case we would minimize the received intensity from other lobes
(minimize the overlap function).

Noting that this integral can be evaluated as a convolution of the form

[sinc (WTX fx) ∗ sinc (WRX fx)]∆ fx(m) = 0 (S4)

we Fourier transform the convolution to get a multiplication of rects, the two aperture functions.
We therefore have [

F−1
{

rect
(

x
WTX

)
rect

(
x

WRX

)}]
∆ fx(m)

= 0. (S5)

However, this can be easily simplified to a single rect with the width of the smaller aperture.
Therefore, for a given TX array width, there is no effect on the overlap (grating lobe suppression)
by making the RX array larger than the TX array. However, if the RX array is smaller than the TX
array the overlap will be affected (negatively, as we will show). This will motivate choosing an
RX array the same size as the TX array.

Denoting the effective aperture width as W = min[WTX , WRX ], the null overlap condition is

sinc (W∆ fx(m)) = 0. (S6)

This condition sets a restriction on the beam center offset ∆ fx which can be understood more
intuitively as choosing to align the peak of one radiation pattern with the null of the other.
Specifically, we require for m 6= 0 (i.e. all grating lobes, but excluding the overlapping main lobes)
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W∆ fx(m) = n, n ∈ Z : n 6= 0 (S7)

or equivalently

W
(

1
ΛTX

− 1
ΛRX

)
= n, n ∈ Z : n 6= 0. (S8)

Notably, for NTX − NRX = k, and choosing identically sized TX and RX arrays W = WTX = WRX
(thereby setting ΛRX = ΛTX NTX/NRX), this null overlap is guaranteed. This can be seen by
evaluating the null overlap condition which is

W
(

1
ΛTX

− 1
ΛRX

)
= k (S9)

recovering the solution we arrived at in the body of the paper heuristically.
We note here that smaller aperture widths, which determine the effective overlap width W,

increase the minimum pitch difference between the TX and RX arrays required to reach a given
null of the sinc. Other considerations, in particular power loss to unused grating lobes, motivate
small pitches for both the TX and RX arrays. One therefore desires to use the smallest pitch
possible for both arrays, and for one array the pitch is sacrificed in order to achieve this peak-
null alignment for grating lobe suppression. One should then avoid worsening this sacrifice
by decreasing the RX array width below the TX array width, and there is no benefit gained
with regard to grating lobes suppression by making the RX array larger than the TX array. This
consideration therefore motivates making both arrays the same size, again arriving at a conclusion
which was intuitively arrived at the in the main body of the paper.

3. GRATING LOBE NULLING WITH ARBITRARY APODIZATION

Regarding other apodization patterns, in general this method of ‘perfect’ grating lobe suppression
using the Vernier method can be applied to any apodization function with few restrictions. For the
purposes of the derivation we will restrict both TX and RX arrays to have the same apodization,
but the same method is applicable for any combination of apodizations so long as the correlation
of their Fourier transforms has a zero-crossing.

For identical TX and RX array apodizations, to achieve ideal grating lobe suppression we
require an apodization which, when squared, has a Fourier transform with at least one zero-
crossing. More specifically, we require that the aperture amplitude (without restrictions on phase)
be a function f (x) such that F−1{ f 2(x)} = 0 for some spatial frequency fx = a. In order to
suppress all grating lobes simultaneously, the nulls of the Fourier transform should be periodic
and aligned to fx = 0. Notably, the vast majority of windowing/apodization functions meet
these criteria [2], with a few exceptions such as the Hanning-Poisson window [3]. Any window
function which is not ‘smooth’, or continuous at all derivatives throughout the window, will have
positive and negative sidelobes in the Fourier domain interspersed with periodic zeroes [3]. The
set of functions which are smooth and have compact support are classified by mathematicians
as ‘mollifiers’ [4]. However, this smoothness is a necessary but not sufficient criterion to avoid
sidelobes; some functions within this set will still have sidelobes, such as the ‘standard’ mollifier
[5].

Taking the null overlap condition for a general far-field distribution F( fx) = F{ f (x)} we have∫ ∞

−∞
d fxF( fx)F( fx − ∆ fx) = 0. (S10)

Noting again that this equation is identical to an auto-convolution, we can rewrite the equation as

[F( fx) ∗ F( fx)]∆ fx
= 0 (S11)

or, in the Fourier domain, [
F−1

{
f 2(x)

}]
∆ fx

= 0. (S12)

The suppression condition is easily obtained by choosing ∆ fx as the location of a null of the
auto-correlation of F( fx). For different apodizations, we equivalently require

[F( fx) ? G( fx)]∆ fx
= 0. (S13)
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If this condition is enforced for the first grating lobe pair, the null periodicity about the symmetry
plane ensures that all higher order grating lobes are also suppressed.

4. DESIGN CONSIDERATIONS FOR STEERING MODES IN SOPAS

The SOPA design presents a unique consideration for Vernier beam steering, as the emitters no
longer have fully independent delay lines – the emitter length factors into the incremental delay.
Using the temporal delay interpretation of steering, we can write the phase step for the SOPA
design as

∆φ(∆ω) = τ∆ω

= ∆ω
(

τg + τf + 2τbend

) (S14)

where τg is the delay in the grating (emitter), τf is the delay in the flyback waveguide, and τbend is
the delay in one taper-bend-taper structure, so that τg + τf + 2τbend is one full row-to-row delay.
Here τbend incorporates the delay of a single adiabatic 180◦ bend and the two tapers required to
connect the grating waveguide to the flyback waveguide.

For simplicity we consider only changing τf and τg as the bend and taper designs are signifi-
cantly constrained by the desire to minimize loss over the operating bandwidth. We additionally
assume τbend is identical in both TX and RX OPAs (i.e. unaffected by the difference in row-to-row
pitches ΛTX , ΛRX). In practice, the bend delay will vary slightly between the two OPAs which
modifies the optimal design. While one could control the delay by engineering the group index,
the waveguide lengths are much simpler to define and, unlike the group index, unaffected by
fabrication variations in layer thickness or composition. For a given grating cross-section and a
(different) flyback cross-section there will be two group indices ng

g (grating), n f
g (flyback) which

we assume are identical for TX and RX SOPAs.
Under the restriction of equal flyback and grating lengths Lg, the row-to-row delay is

τ = 2τbend +
Lg

c

(
ng

g + n f
g

)
(S15)

allowing us to set the grating length according to the steering mode. As stated previously in
Eqs. 10a/b in the main text, the tracking and sliding modes respectively correspond to

τRX =
ΛRX
ΛTX

τTX (S16)

τRX = τTX . (S17)

While the sliding mode implies that both TX and RX SOPAs should have identical grating lengths,
the tracking mode requires τRX > τTX for ΛRX > ΛTX with NRX + k = NTX . In this case
one needs longer grating and flyback waveguides to achieve the increased delay. An intuitive
solution is found in the case where the delay in the bends can be neglected, in which case
LRX

g = ΛRX/ΛTX LTX
g . Recalling our suggested configuration of NTXΛTX = NRXΛRX for Vernier

nulling of grating lobes, it can be seen that the same phase delay condition enforces that the total
waveguide length of the transmit and receive arrays be identical NTX LTX

g = NRX LRX
g when there

is no delay in the bends. This would be the starting condition for a real design incorporating
tapers and bends in which the receive waveguide length LRX

g would be varied to give τRX = τTX
across the beamsteering bandwidth.

5. COMPARISON OF STEERING MODES

It is worth making a few comments at this point on both Vernier steering modes which, upon
further examination, will point to an optimized steering mode which outperforms either of these
basic approaches. Several different FOVs will be referenced in this section, which we clarify here.
The element function provides a fundamental limit on the FOV which could be achieved by any
OPA design, and for an emitter with width w the element FOV in the spatial frequency domain
is FOVe = 2π/d. The grating lobe-limited FOV, which any periodic OPA will be limited to if a
Vernier transceiver design is not used, is FOVg = 2π/Λ where Λ denotes the pitch of the emitters.
Finally, for a Vernier transceiver design, there is an FOV over which two lobes remain aligned and
power can be emitted/received. This FOV can be considered as the effective FOV of the Vernier
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Fig. S3. Schematic depiction of achievable FOVs for different steering configuration and
associated bandwidth usage. a Sliding steering configuration – the grating lobe-limited FOV
is achieved and the wavelength bandwidth is used efficiently. The green line represents the
element pattern FOV due to the individual grating widths, the maximum achievable FOV. The
gold box denotes the set of angles and wavelengths which can be addressed by the Vernier
transceiver. The gray boxes denote angles or wavelengths which are suppressed by the Vernier
transceiver and cannot be addressed. b Tracking steering configuration – in theory the full 180◦

FOV is addressed by the aligned lobes, however the effective FOV is limited by the element
pattern. The wavelengths at which the main lobes are outside this FOV (gray box) are not
usable by the Vernier transceiver. c Controllable FOV steering configuration – the FOV is set to
a desired width (here, the nulls of the element function) resulting in the entire bandwidth being
utilized and an FOV larger than the grating lobe spacing.

transceiver, which is dependent on the steering configuration, and we denote this quantity as
FOVV .

One major problem for OPAs is the effect of fabrication errors. Pointing error, where the beam
emission angle at the design wavelength is different than the desired angle, is one such effect.
For OPAs using phase-shifter control, the pointing error is calibrated out at the same time as the
emitter phases are corrected. For a single wavelength-steered OPA such as the SOPA, one can
simply change the wavelength to correct this pointing error. However, for a pair of wavelength-
steered OPAs used in a transceiver, this pointing error will result in misaligned TX and RX main
lobes in addition to possible, unanticipated alignment of grating lobes.

The sliding mode (Fig. S3a, see also Supplementary Video 2) has the property of guaranteeing
that two lobes will be aligned at some angle within the hemisphere due to the quality of the two
lobes ‘sliding’ across each other within the FOVV during a wavelength scan, and FOVV remains
limited to the grating lobe spacing FOVG (see gray boxes in Fig. S3a, denoting in accessible
angles). However, for misaligned TX and RX lobes arising from fabrication- or temperature-
induced pointing error, this FOVV may not be centered on broadside. The two most-aligned lobes
are within this off-broadside FOVV and, within a single fast scan, will become perfectly aligned
at some angle due to the sliding property. This perfect alignment angle is the center angle of the
FOVV . For a k = 1 Vernier transceiver (see Eq. Eq. (S9)) an FOVV scan will lead to a sliding of the
transmitter spot fully over the receiver spot.

This contrasts with the tracking mode (Fig. S3b, see also Supplementary Video 3), where the
relative alignment of every pair of lobes is locked in place throughout the wavelength scan.
Notably the Vernier arrangement guarantees one pair of lobes to be nearly aligned. Additionally,
because the alignment is locked in at all wavelengths, the limitations on FOV imposed by grating
lobes are entirely removed. However, the element function FOVE provides a limit on the angles
which beams can be emitted to/received from, and FOVV is simply FOVE (centered on broadside).
The tracking mode therefore addresses the issue of pointing error in wavelength-steered OPA
transceivers in addition to expanding the FOV.

While tracking mode is clearly superior in this regard, there is a price paid for the increased
FOVV and guaranteed optimal alignment at some (possibly unknown) angle in wavelength-
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steered OPAs like the SOPA. A significant portion of the full hemispherical lobe alignment of
tracking mode is spent outside FOVE (see gray box in Fig. S3b). This fact highlights that a portion
of the wavelength scan is lost by scanning over angles where the OPA is incapable of transmitting
or receiving a signal as the aligned lobes are directed outside the radiation pattern of a single
grating. It is convenient at this point to consider that, for a given SOPA design with particular
row-to-row delay, there is a set frequency shift required to move to the next resolvable spot along
the fast axis. If the wavelength scan range is also set, then there is constant number of spots one
can steer to. One can then see that the price of the guaranteed alignment and extended FOVV
of tracking mode is a reduction in the total number of usable, addressable spots. For sliding
mode, when the perfect alignment angle is within the radiation pattern of a single grating, one
can access all potential spots. The highest efficiency over the scan results when the alignment
angle is in the middle (at the peak) of the single grating radiation pattern (element pattern in RF
terminology), with bidirectional link efficiency decreasing towards the edges of the scan as the
transmit and receive main lobes slide apart.

One additional difference between the two approaches should be noted, which is the set of
spots that can be addressed. The use of 2D wavelength steering means that beam steering along
both dimensions is not independent, any change in wavelength will steer the beam along both
axes. The different scanning properties of tracking and sliding mode along the grating-orthogonal
(x) direction then motivates design for different row-to-row phase accumulation rates. Ideally, the
transceiver will steer to every spot within a 2D FOVV without gaps. This requires that a fast scan
across FOVV steers the spot by one resolvable spot width along the grating dimension. Because
the two steering modes have different FOVV ’s, the different Vernier steering modes are optimized
by different delay line lengths.

In order to benefit from the increased FOVV of the tracking mode without ‘missing’ spots
along the grating dimension, one needs to increase the row-to-row delay relative to the sliding
mode (decreasing the frequency shift needed to steer by one spot along the grating-orthogonal
dimension). For a TX OPA design with N grating lobes within the hemisphere, a design which
meets this criterion would have N× larger row-to-row delay than the base design. This increases
the number of spots within a full wavelength scan by a factor of N, while simultaneously
decreasing the frequency to needed to steer to the next spot by a factor of 1/N. Tracking mode
therefore can address more spots than sliding mode because FOVV is larger along the grating-
orthogonal dimension while the spot size is unaffected. The price is the N× smaller frequency
bandwidth available for operations such as ranging [6] and sub-spot imaging [7] which are
bandwidth-limited to the frequency shift required to address the next resolvable spot. In addition,
this N× larger delay will require a larger aperture, increase the effects of phase errors from
fabrication non-uniformity, and reduce the bandwidth available for ranging and imaging.

6. STEERING CONFIGURATION FOR CONTROLLABLE FOV VERNIER

Considering these two steering options, it can be seen that although the sliding mode eliminates
unwanted grating lobe returns, it still suffers from the conventional grating lobe-limited FOVG
and potential misalignment between TX and RX at the center of the FOVV whereas tracking
mode throws away some scan wavelengths which are outside the element function FOVE. This
suggests that a hybrid steering mode which exactly scans over the maximum possible angular
range without throwing away any scan wavelengths. Here, the maximum FOV achievable is
that limited by the radiation pattern of a single grating row width (the element pattern), FOVE.
This can be achieved by designing a Vernier which has lobes which slide apart on the order of
lobe width over the desired FOVV ≈ FOVE (Fig. S3c, see also Supplementary Video 4), rather
than sliding apart over FOVG as in sliding mode. Tracking mode can be seen as the case where
the lobes do not slide apart, so we require a delay relation between the TX/RX OPAs which is
between the sliding and tracking delay relations.

We define the FOVV for this controllable FOV Vernier in the same manner as the sliding mode:
the angular range scanned over between perfect lobe alignment and the first peak-null lobe
alignment. Considering the case of perfect lobe alignment at broadside, one needs simply to
find the emitter phases which steers one lobe to one edge of FOVV and the other lobe to the
corresponding null.

For this situation, when the RX OPA main lobe is steered to the edge of FOVV , the TX OPA
main lobe is aligned with the RX null just outside the FOV in accordance with the null condition
Eq. (S6) with m = 1. Denoting the angle corresponding to the edge of FOVV as θFOV, the spatial
frequency corresponding to the positive edge of FOVV is
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βFOV =
2π

λ
sin
(

θFOV
2

)
. (S18)

Using this requirement, the relation in phase difference between the TX and RX OPAs for the
hybrid steering configuration can be found as

∆φRX =
ΛRX
ΛTX

1
1 + 2π

βFOVW
∆φTX (S19)

where W = WTX = WRX is the identical aperture width between the TX and RX OPAs enforced
by the optimal lobe suppression condition.

The tracking and sliding configurations can be seen as limiting cases of this hybrid steering
configuration. The tracking condition, in which the lobes never slide apart, therefore has an
‘infinite’ FOV (in the absence of an element function) and can be achieved by setting βFOV = ∞ in
Eq. (S19). The sliding condition, which has an FOVV limited to the grating lobe spacing, can also
be obtained from Eq. (S19) by setting βFOV = 2π/ΛRX .

7. PHASE ERRORS FOR BISTATIC APERTURES

The effects of phase errors are compounded by a bistatic aperture configuration, such as the
Vernier approach, as compared to a monostatic aperture. As mentioned in the main text, phase
errors within the OPA create a wider, non-ideal spot in comparison to the theoretical profile. To
our knowledge these phase errors arise from layer thickness variation across the wafer, and within
the OPA only changes in layer thickness contribute to phase errors (and not the average layer
thickness). For wavelength-steered OPAs such as the SOPA, changes to average layer thickness
only contribute to a ‘pointing error’, namely that the wavelength corresponding to emission at
a certain angle will change with layer thickness. For a single OPA this is not an issue, one can
simply adjust the wavelength tuning range, but for a pair of OPAs this could reduce or entirely
negate the return signal if the pointing error is on the scale of, or greater than, the beam width.
We conducted trial experiments with many pairs of SOPAs to find the optimal overlap and spot
profile shown in this paper, with each pair separated by approximately 2 mm. Based on these
trial experiments, this pointing error is non-negligible over the 6.4 cm path lengths used in our
SOPA design, but negligible over the path length of an individual grating (0.8 mm). During the
trial experiments, we noted that the spots of all pairs of SOPAs were effectively fully overlapping
along the grating dimension, indicating negligible pointing errors over the grating path length.
However, in many cases the spots were misaligned along the orthogonal (row-to-row) dimension
to the extent that no significant return signal would be detectable. We did not characterize
pointing error over larger OPA-to-OPA distances. It is possible to compensate for both intra-
and inter-OPA phase errors using phase-shifters between rows, an approach we are pursuing in
ongoing work, but those designs were not available for this experiment. The length scale over
which the pointing error becomes relevant does indicate that the Vernier scheme, and bistatic
aperture schemes in general, are well suited to 1D or 2D phase-shifter steered OPA designs due
to their shorter path lengths in comparison to 2D wavelength-steered OPAs.
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