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Machine learning algorithms
Support vector machines (SVMs) are supervised machine learning algorithms used for classification problems [1, 

2]. SVMs were originally developed by Vanpik et al. in 1995b [3] for binary classification problems based on a risk 
minimization principle. By the use of kernels, SVMs aim to find and/or create a hyperplane to separate various 
features with maximal margins in the original or a higher dimensional space [4, 1]. Recently, SVMs have been 
extended to SVRMs (support vector regression machines) to solve regression problems [4] by introducing the 
epsilon-insensitive loss function [5]. Commonly used kernels include linear, polynomial, and Gaussian radial-based 
functions (RBF). 

Extreme gradient boosting (XGB), originally proposed by Chen et al. in 2016 [6], is an implementation of the 
gradient boosting decision tree model (GBDT) developed by Friedman et al. in 2001 [7]. XGB is an ensemble 
supervised learning algorithm based on mixing bagging and boosting weak learners [8, 9]. Traditional gradient 
boosting machines (GBM) iterate multiple trees (weak learners) by using only first derivative information to make 
the prediction. GBMs are suitable for both regression and binary classification problems [10]. Alternatively, in XGB, 
both first and second order derivatives are used with a regularization function to avoid overfitting.

Artificial neural networks (ANNs) are supervised learning algorithms that mimic the human brain, as they were 
inspired by the biological systems of neurons and synapses [11]. The ANN architecture is composed of an input layer 
which handles the input tensor, an output layer which handles the target tensor, and hidden layers which contain 
neurons [12]. Deep neural networks (DNNs) refer to deeper architectures which contain more than one hidden layer. 
DNN models are developed using a fully connected multilayer perceptron (MLP) associated with backpropagation 
algorithm [13, 14]. Three stages are involved in the back propagation of neural networks (BPNN): a feed forward to 
train the input tensor, calculation and backpropagation of the resulting error, and updating the weights in order to 
minimize the error [15]. The back propagation is achieved by using a fixed learning rate and partial derivatives to 
prevent under/overfitting [1]. A schematic of the DNN model used in this paper is given in Fig. S1.

Figure S1: Schematic of the DNN model used in this work.
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Cross validation: 

To assess the performance and compare the algorithms, a k-fold cross validation was performed on each model. Here, 
the training data are divided into k subsets. Then, k-1 subsets are taken as training data, and the k-th fold is used for 
validation. The process is repeated until each fold is served. Figure S2 shows the process of cross validation. In this 
work, a 10-fold cross validation was used while monitoring various statistical metrics: MSE (mean square error), 
RMSE (root mean squared error), MAE (mean absolute error), and R-squared (coefficient of determination). The 
equations for these metrics are given in Table S1.

Figure S2: Cross validation schematic.
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Table S1: Error metrics with their corresponding equations [16].
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Data Description: 

A total of 5400 simulated and 132 measured BTEX absorbance spectra, over 3039.25-3040.5 cm-1 range, are 
combined. Our goal is to predict the mole fraction of each BTEX component in a BTEX mixture. The input of this model 
is the total BTEX absorbance, and the targets are the ratios of BTEX components. Simulated spectra were generated 
via a MATLAB code using Eq. S1: 

𝐴 =
4

1
𝑎𝑘 ∗ 𝐴𝑘 (S1)

where 𝐴 is the composite absorption spectrum, 𝑎𝑘 is the ratio/contribution of species k, and 𝐴𝑘 is the normalized 
reference absorption spectrum of species k. 
A Gaussian white noise layer was added to the training data with a standard deviation of 15% in order to mimic 
experimental data. Thereafter, the data are scaled using a min-max pre-processor. The goal of the scaling is to have 
all inputs in the same range so that the learning algorithm can predict the contributions of each species at different 
concentrations. 

Model pathway:

Step 1: Absorbance contributions of 5400 simulated and 132 measured spectra (with known ratios) are 
blended in a matrix of 5532 rows   and 4 columns. Each column corresponds to the ratio of one of the BTEX 
species. The sum of ratios in each row should be unity. Table S2 illustrates the ratio generation process.

Benzene Toluene Ethylbenzene Xylenes

row 1 0.5 0.5 0 0

row 2 0.75 0 0.25 0

row 3 0.25 0.25 0.25 0.25

row 4 0 0.2 0.6 0.2

row ... ... ... ... ...

row ... ... ... ... ...

row ... ... ... ... ...

row 5532 0.2 0.2 0.1 0.5

Table S2: Ratio generation process from simulated and measured spectra.

Step   2:   After the ratio table is generated, a min-max   normalization is applied to scale the data so that we 
only focus on contributions. The min-max normalization is given by Eq. S2:

𝐴𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐴 ― 𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 ― 𝐴𝑚𝑖𝑛
(S2)

where 𝐴𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized (scaled) absorbance, 𝐴 is the composite absorbance, and 𝐴𝑚𝑎𝑥 and 𝐴𝑚𝑖𝑛 
are the maximum and minimum absorbance values in 𝐴, respectively. Figure S3 shows the features of 
normalized BTEX spectra.
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Step 3: Normalized absorbance is fed to our DNN model. The input tensor is the 5532 scaled spectra and the 
target tensor is the ratios of each BTEX species. The data are randomly split into 80/20 train/test datasets. The 
model performance was monitored by computing RMSE, MAE, and R2.
Step 4: After training the data and tuning its hyper-parameters, validation is done with new experimental 
data (not used in the training/testing of the model). The output of the model (ratios of all BTEX species) is 
used to calculate individual mole fractions using Eq. S3:

𝜒𝑘 = 𝑅𝑎𝑡𝑖𝑜𝑘 ∗
𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑘
(S3)

where 𝜒𝑘 is the mole fraction of the k-th BTEX species, 𝑅𝑎𝑡𝑖𝑜𝑘 is the ratio of the k-th BTEX species obtained from 
the DNN model, 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the composite measured absorbance using Beer-Lambert law, and 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑘 is 
the reference absorbance of the k-th BTEX at T = 25 °C, P = 1 atm, L = 30 cm, and 𝜒 = 1000 ppm.
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