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1 SCATTERING ANALYSIS: FIRST-ORDER (BORN) APPROXIMATION

Invisible non-Hermitian potentials in
discrete-time photonic quantum walks:
supplemental document

This supplemental document contains some technical details and mathematical proofs on non-
Hermitian photonic quantum walks in the fiber loop setup.

1. SCATTERING ANALYSIS: FIRST-ORDER (BORN) APPROXIMATION

In the moving reference frame (x, t), with x = n + vt and t = m, the light dynamics in the fiber
loops is described by the discrete-time coupled equations given in the main manuscript

f (x, t + 1) = [cos β f (x − v + 1, t) + i sin βg(x − v + 1, t)] exp[−iφ(x)] (S1)

g(x, t + 1) = i sin β f (x − v − 1, t) + cos βg(x − v − 1, t). (S2)

A scattering wave solution to Eqs.(S1) and (S2) with quasi-energy ϵ0 is given by f (x, t) =
F(x) exp(−iϵ0t), g(x, t) = G(x) exp(−iϵ0t), where

exp(−iϵ0)F(x) = [cos βF(x − v + 1) + i sin βG(x − v + 1)] exp[−iφ(x)] (S3)

exp(−iϵ0)G(x) = i sin βF(x − v − 1) + cos βG(x − v − 1). (S4)

We note that the quasi energy is defined apart from integer multiples than 2π, so that we take
−π ≤ ϵ0 < π. The potential φ(x) is assumed to vanish as x → ±∞ faster than ∼ 1/x, so that
the asymptotic form of F(x) and G(x) is given by a superposition of plane waves. For the sake
of definiteness, let us assume that the incident wave is a Bloch wave belonging to the upper
lattice band with wave number q+0 , defined by the relation ϵ+(q+0 ) = ϵ0. Since for a drift velocity
v larger than cos β there are not reflected waves, the asymptotic behavior of F(x) and G(x), as
x → −∞, reads  F(x)

G(x)

 ≃

 F̄+(q+0 )

Ḡ+(q+0 )

 exp(iq+0 x) (S5)

while for x → ∞ one has F(x)

G(x)

 ≃ ∑
α,±

t±α

 F̄±(q±α )

Ḡ±(q±α )

 exp(iq±α x). (S6)

In the above equations, F̄±(q)

Ḡ±(q)

 =

 i sin β exp[iq(1 − v)]

exp[−iϵ±(q)]− cos β exp[iq(1 − v)]

 (S7)

are the amplitudes of the Bloch eigenstates of the lattice in the upper (+) and lower (-) bands,
whereas the Bloch wave numbers q±α are defined by the equations (see Fig.2 of the main
manuscript)

ϵ+(q+α ) = ϵ0 + 2πα , ϵ−(q−α ) = ϵ0 + 2πα (S8)
with ϵ±(q) = qv ± acos(cos β cos q) and α = 0,±1,±2, .... The integer α basically represents the
scattering order (channel) arising from the discrete-time nature of the dynamics. The amplitudes
t±α are the transmission coefficients of various scattering channels, labelled by the index α, in
the two bands (±). Clearly, the scattering potential is invisible provided that all amplitudes t±α
vanish, apart from t+0 which should be t+0 = 1, regardless of the value of quasi energy ϵ0, i.e. for
any incident Bloch wave.

An analytical expression of the transmission amplitudes t±α can be obtained in the weak
potential limit |φ(x)| ≪ 1 using a sandard first-order (Born) approximation. In this limit, one can
write (F(x), G(x))T ≃ (F0(x), G0(x))T + (F1(x), G1(x))T , where F0(x)

G0(x)

 =

 F̄+(q+0 )

Ḡ+(q+0 )

 exp(iq+0 x) (S9)



is the zero-order solution, corresponding to the incident wave in the absence of the scattering
potential, while (F1(x), G1(x))T is the leading order approximation to the scattered wave, which
is the solution to the coupled equations

exp(−iϵ0)F1(x)− cos βF1(x − v + 1)− i sin βG1(x − v + 1) = Θ(x) (S10)

exp(−iϵ0)G1(x)− i sin βF1(x − v − 1)− cos βG1(x − v − 1) = 0. (S11)

where we have set

Θ(x) = −iφ(x)[cos βF0(x − v + 1) + i sin βG0(x − v + 1)]. (S12)

The coupled equations (S10) and (S11) should be solved with the asymptotic condition F1(x), G1(x) →
0 as x → −∞. Within the first order approximation, the scattering potential is invisible whenever
F1(x), G1(x) → 0 as x → ∞. The solution F1(x), G1(x) can be readily found by the method of
Green′s function, namely one has

F1(x) =
∫ ∞

−∞
dξ Θ(ξ)F (x − ξ) , G1(x) =

∫ ∞

−∞
dξ Θ(ξ)G(x − ξ), (S13)

where the Green′s functions F (x) and G(x) are the solution to Eqs.(S10) and (S11), with Θ(x)
replaced by the delta-Dirac function δ(x) on the right hand side of Eq.(S10), and satisfying the
asymptotic condition F (x),G(x) → 0 as x → −∞. The exact form of the Green′s function can be
obtained by a standard Fourier transform analysis. After some straightforward calculations one
obtains

F (x) =
1

2π

∫ ∞

−∞
dqF̂ (q − iδ) exp[i(q − iδ)x] , G(x) =

1
2π

∫ ∞

−∞
dqĜ(q − iδ) exp[i(q − iδ)x]

(S14)
where

F̂ (q − iδ) =
exp[2iv(q − iδ)] {exp(−iϵ0)− cos β exp[−i(v + 1)(q − iδ)]}

{exp[−iϵ0 + iv(q − iδ)]− exp(iθ)} {exp[−iϵ0 + iv(q − iδ)]− exp(−iθ)} (S15)

Ĝ(q − iδ) =
i sin β exp[i(v − 1)(q − iδ)]

{exp[−iϵ0 + iv(q − iδ)]− exp(iθ)} {exp[−iϵ0 + iv(q − iδ)]− exp(−iθ)} . (S16)

In the above equations, δ = 0+ is an a arbitrarily small positive number, whereas θ = θ(q − iδ) is
defined by the relation

θ(q − iδ) = acos(cos β cos(q − iδ)). (S17)

Note that F̂ (q − iδ) and Ĝ(q − iδ) are analytic functions of q in the Im(q) < 0 lower half complex
plane, while they show a numerable set of poles of first order at q = q±α + iδ in the Im(q) > 0
upper half complex plane, close to the real axis. Therefore, from the Cauchy residue theorem and
Eq.(S14) it readily follows that F (x) and G(x) vanish for x → −∞, and thus according to Eq.(13)
one has F1(x), G1(x) → 0 as x → −∞, as it should be. On the other hand, for x → ∞ the Green′s
functions do not vanish and their behavior can be calculated from Eqs.(S14-S16) using the Cauchy
residue theorem, after closing the integration contour in Eq.(S14) along the upper half complex q
plane. This yields

F (x) ∼ ∑
α,±

iR±,F
α exp(iq±α x) , G(x) ∼ ∑

α,±
iR±,G

α exp(iq±α x) (S18)

as x → ∞, where R±,F
α and R±,G

α are the residues of F̂ (q − iδ) and Ĝ(q − iδ) at q = q±α + iδ, i.e.

R±,F
α = lim

q→q±α +iδ
(q − q±α − iδ)F̂ (q − iδ) , R±,G

α = lim
q→q±α +iδ

(q − q±α − iδ)Ĝ(q − iδ). (S19)

Note that the following relation holds

R±,G
α = −i

exp[iq±α (v − 1)]
{

exp(−iϵ0)− cos β exp[−i(v − 1)q±α ]
}

sin β
R±,F

α (S20)

which readily follows from Eqs.(S15-S16) and from the expression of ϵ0. Using Eqs.(S12), (S18) and
(S20), from Eq.(S13) it then finally follows that the asymptotic behavior of F(x) ≃ F0(x) + F1(x)
and G(x) ≃ G0(x) + G1(x) as x → ∞ is given by F(x)

G(x)

 ≃ ∑
α,±

t±α

 F̄±(q±α )

Ḡ±(q±α )

 exp(iq±α x) (S21)
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where the transmission amplitudes t±α read

t±α = δα,0+ + exp[−iϵ0 + i(q+0 − q±α )(1 − v)]× R±,F
α φ̂(q±α − q+0 ) (S22)

and where
φ̂(q) =

∫ ∞

−∞
dxφ(x) exp(−iqx) (S23)

is the Fourier transform of the scattering potential φ(x). Since in principle the index α of scattering
channels varies from −∞ to ∞ and the residues R±,F

α are non-vanishing, from Eq.(S22) it is clear
that the scattering potential turns out to be invisible, for any incidence wave, if and only if
φ̂(q) = 0 for any q. This means that, even in the first-order (Born) approximation, any potential
φ(x) cannot be strictly invisible. However, in the limit of a slowly-drifting potential, i.e. for
v → 0, all wave numbers q±α diverge, expect for q+0 which does not depend on v. Since |φ̂(q)|
vanishes as q → ±∞, this implies that the dominant scattering channel is the one corresponding
to α = 0 on the upper (+) band, i.e. one has t±α ≃ 0, with the exception of t+0 , which reads
t+0 = 1 + exp(−iϵ0)R+,F

0 φ̂(0). Hence, for a slowly-drifting potential the condition of invisibility
is simply given by φ̂(0) = 0, i.e. ∫ ∞

−∞
dxφ(x) = 0. (S24)

We note that this result is valid only in first-order (Born) approximation, i.e. for a weak potential
strength. As shown in the next section, for the class of Kramers-Kronig potentials the invisibility
of a slowly-drifting potential holds beyond the first-order approximation, i.e. even for a strong
potential. Finally, it should be mentioned that, in order to avoid reflection, the condition v > cos β
should be satisfied. For a slowly-drifting potential (v → 0) this necessarily implies β → π/2− for
the coupling angle, with cos β ≃ (π/2 − β) > v.

2. INVISIBILITY OF SLOWLY-DRIFTING KRAMERS-KRONIG POTENTIALS

Let us consider the class of Kramers-Kronig potentials [2], i.e. such that φ(x) is an analytic
function of the complex x variable either in the upper-half complex plane Im(x) ≥ 0, or in the
lower-half complex plane Im(x) ≤ 0. This is equivalent to state that the Fourier spectrum φ̂(q) is
vanishing for either q < 0 or q > 0, respectively. In order to ensure that, far from the scattering
region, the asymptotic states are plane (Bloch) waves, we require φ(x) to decay at x → ±∞ faster
than ∼ 1/x [1]. This requirement is satisfied provided that the so-called cancellation condition
φ̂(q = 0) = 0 holds [1], which is equivalent to Eq.(S24). For example, any complex potential of
the form

φ(x) = ∑
l

Al
(x − xl)hl

, (S25)

with Al and xl arbitrary (even stochastic) complex numbers, with the constraint Im(xl) > 0 for
any l [or Im(xl) < 0 for any l], and hl arbitrary integer numbers larger than one, is a Kramers-
Kronig potential satisfying the cancellation condition (S24).
Let us consider the scattering problem of a slowly-drifting Kramers-Kronig potential, i.e the
photonic quantum walk in the double limit v → 0 and β → π/2− with v > cos β. As discussed
in the previous section, in this limit the dominant scattering channel is provided by the wave
number q+0 solely, i.e. all transmission amplitudes t±α , with the exception of t+0 , are negligible.
For an incident plane wave coming from x = −∞ of the form given by Eq.(S5), the asymptotic
behavior of the solution to Eqs.(S3) and (S4) then reads F(x)

G(x)

 ≃

 F̄+(q+0 )

Ḡ+(q+0 )

 exp(iq+0 x) x → −∞

t+0 exp(iq+0 x) x → ∞.
(S26)

To find the expression of the transmission amplitude t+0 = t+0 (q+0 ) beyond the weak-potential
(Born) approximation considered in the previous section, we can exploit the analyticity property
of the potential φ(x) in the half complex plane (either upper or lower half plane) and use the
method of complex space displacement, which has been discussed and used in some previous
works to demonstrate the invisibility properties of the class of Kramers-Kronig potentials (see for
instance [3–5]). Let us assume, for the sake of definiteness, that φ(x) is analytic in the upper half
complex plane, i.e. for Im(x) ≥ 0. In this case the solution F(x), G(x) to the scattering problem
[Eqs.(S3) and (S4)] can be analytically prolonged from the real x axis into such a half complex
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plane. In particular, let us indicate by F(ξ, ω) = F(x = ξ + iω) and G(ξ, ω) = G(x = ξ + iω)
the solutions to Eqs.(S3) and (S4) on the horizontal line Γ defined by the parametric equation
x = ξ + iω, with fixed ω ≥ 0 and −∞ < ξ < ∞ and with the asymptotic form defined by
Eq.(S26) as ω → 0+. The main idea of the complex spatial displacement method is to find suitable
connection relations between the transmission amplitudes t+0 (q+0 , ω) of scattered waves on the
real x axis, i.e., for ω = 0, and on the line Γ, i.e. for ω > 0. Interestingly, owing to the form
of Eq.(S26) it readily follows that the transmission amplitude t+0 (q+0 , ω) does not depend on ω:
this can be readily seen by formally letting x → ξ + iω in Eq.(S26), so that the amplitudes of
both incident and transmitted waves are multiplied by the same factor exp(−q+0 ω) and thus
t+0 (q+0 , ω) = t+0 (q+0 , ω = 0). Hence we can calculate t+0 (q0) = t+0 (q0, ω) by taking the limit
ω → ∞. In this limit, the scattering potential on the line Γ, φ(x = ξ + iω), vanishes uniformly
over the entire ξ axis, and thus limω→∞ t+0 (q+0 , ω) = 1 because in this limit on the line Γ we
basically do not have any scattering potential [5]. Therefore t+0 (q+0 ) = 1, which proves that the
Kramers-Kronig potential φ(x) is invisible.
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