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1. Network modeling and parameter definition.
The product of the input wave and the i-th pixel transmission coefficient (bi) determine 

the amplitude and relative phase of this secondary wave. Based on this, at the output layer, the 

output function ( , , )
iouty x y z  of the i-th pixel located at ( , , )i i ix y z  position can be written as: 
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y x y z  the field distribution at the input field, ( , , )i i i ia x y z  is the amplitude 

coefficient, λ is the wavelength, and i is the phase value of each pixel.

In the training phase, ia  and i  are modelled as follows [37]:
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where ReLU refers to Rectified Linear Unit, and M is the number of neurons per layer. 
Based on Eq. (S6), the phase term of each neuron, 𝜑𝑖, becomes unbounded, but since the 
exp( ( , , ))i i i ij x y z  term is periodic (and bounded) with respect to i  the error back-

propagation algorithm is able to find a solution for the task in hand. The amplitude term ia , is 
kept within the interval (0,1) by using an explicit normalization step shown in Eq. (S5).  
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2. Features of different scales of MDUNet

Fig. S1. The details of diffractive layers of MDUNet and the features of different scales after 
sampling: MNIST and Fashion-MNIST.



3. Comparison of prediction results with different sampling depths.
Table S1. Comparison of prediction results with different sampling depths

MDUNet / Layers MDUNet / Layers

Object Label

5 7 9 11

Object Label

5 7 9 11

6 6 8 6 8 3 3 3 8 8

5 5 6 5 6 6 6 4 4 6

8 8 8 3 3 4 0 4 0 4

4 7 4 9 4 3 3 5 5 3

6 5 6 8 6 8 8 8 5 5

9 9 9 1 1 5 8 5 8 5

2 2 2 3 3 1 1 3 3 1

4 4 9 9 4 8 8 9 9 8

7 7 7 2 2 2 8 2 8 2

7 7 7 1 1 9 7 9 5 9

2 2 8 8 1 8 3 8 3 8


