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Deep-SMOLM: Deep Learning
Resolves the 3D Orientations and 2D
Positions of Overlapping Single
Molecules with Optimal Nanoscale
Resolution: supplement

This document provides supplementary information to “Deep-SMOLM: Deep Learning Resolves the 3D
Orientations and 2D Positions of Overlapping Single Molecules with Optimal Nanoscale Resolution,”
offering details on the forward model, estimator architecture, performance quantification, and sample
preparation.

1. RELATIONSHIP BETWEEN ORIENTATIONAL SECOND MOMENTS AND ORIEN-
TATION ANGLES

The orientation of a dipole-like emitter can be represented by a unit vector [µx, µy, µz] or equivalent polar
and azimuthal angles [θ, ϕ] in spherical coordinates, where [µx, µy, µz] = [sin(θ) cos(ϕ), sin(θ) sin(ϕ),
cos(θ)]. If an emitter “wobbles” through a range of directions represented by a hard-edged cone with
solid angle Ω within a camera’s exposure time, then its orientational trajectory can be represented using
orientational second moments m = [⟨µ2

x⟩, ⟨µ2
y⟩, ⟨µ2

z⟩, ⟨µxµy⟩, ⟨µxµz⟩, ⟨µyµz⟩]T ∈ R6 as given by

⟨µ2
x⟩ = γµ2

x + (1 − γ)/3, (S1a)

⟨µ2
y⟩ = γµ2

y + (1 − γ)/3, (S1b)

⟨µ2
z⟩ = γµ2

z + (1 − γ)/3, (S1c)
⟨µxµy⟩ = γµxµy, (S1d)
⟨µxµz⟩ = γµxµz, (S1e)
⟨µyµz⟩ = γµyµz, and (S1f)

γ = 1 − 3Ω
4π

+
Ω2

8π2 , (S1g)

where ⟨·⟩ denotes a temporal average over the camera acquisition period. The rotational constraint γ
and the solid angle Ω are equivalent ways to quantify an emitter’s rotational diffusion [1].

2. DEEP-SMOLM PROCESSING ARCHITECTURE

i. Network structure
We build and optimize our neural network using Pytorch. Our neural network structure (Fig. S1) is
adapted from DeepSMOLM3D [2]. More details are located in Fig. S1 and within the shared code in [3, 4].

ii. Training the neural network
We use mini-batch gradient descent (MBGD) to train the neural network, setting a batch size of 32 images
to accommodate the memory capacity of our GPU. The learning rate is set to be 0.001 at the beginning. If
the validation loss doesn’t decrease for three consecutive epochs, then the learning rate is reduced by a
factor of 0.1. This strategy guarantees an optimal learning rate even if the learning rate is too large at the
beginning. We use momentum factor of 0.9, and a weight decay of 0.0005 for MBGD. We also trained
the neural network using another method, the Adam optimizer. We notice the validation losses for the
optimized networks to be very similar to one another.
To choose the best loss function for the neural network, we compare the validation loss of a neural

network trained with an MSE loss (Eqn. 4) to a network trained with an ℓ1 loss as

ℓ(ĥ, h) =
1

LK ∑
L,K

|ĥk
l − hk

l |, (S2)
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Fig. S1. Neural network architecture. A set of (top, red) x- and (bottom, blue) y-polarized images Iin is
first passed through a batch normalization (BN) to normalize pixel values. Next, the normalized image
Inorm is passed to the fully convolutional architecture composed of three parts. In the first section,
the normalized image Inorm goes through six (blue box) dilated convolution blocks. The dilated con-
volution blocks have a fixed number of channels (64) comprising a 2D convolutional layer (Conv2D),
a batch normalization (BN) layer, and a LeakyRELU (LReL) activation function with a negative slope
of 0.2. The 2D convolutional layer has a filter size of 3 × 3 and dilution rate of di , where the index i
denotes the ith dilated convolution block, d1 = d2 = d5 = d6 = 1, d3 = 2, and d4 = 4. Concate-
nation (C) and element-wise addition (+) are used to improve the gradient flow. The second part of
the network is designed to upsample the image laterally by a factor of 6 by using one 3× (orange box)
resize-convolution block and one 2× resize-convolution block. NN×U: U× upsampling operator. The
third part of the network creates output images by gradually reducing the number of channels to a
final output of six, corresponding to the six output images (Fig. S5). The (blue box) dilated convolution
blocks in the third part of the network have a filter size of 3 × 3 and dilution rate of 1.
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Fig. S2. Comparison of validation losses when training with the (blue) Adam and (orange) mini-batch
gradient descent (MBGD) optimizers.

where [·]kl represents the kth pixel of the lth ground truth image h and ĥ are output images from the
network. The validation loss for both models are calculated using MSE (Eqn. 4). We found that the
validation loss of the network trained using ℓ1 does not converge, while the network trained with MSE
converges well. We therefore use an MSE loss for our neural network.
Since we designed 3D orientations and 2D positions to be orthogonally encoded into the intensities

and spatial positions, respectively, of Gaussian spots within Deep-SMOLM’s output images (Fig. 1(c)),
there is no need to balance the contributions of 3D orientation estimation errors versus 2D position
estimation errors in the loss function. The intensity distribution of the DSF is linearly proportional to the
orientational moments as shown in Eqn. 1. Each brightness-weighted orientational moment contributes
approximately equally to the final DSF shape (Fig. S10). Without tuning the weights among six images
(Eqn. 4), the training loss from the six brightness-weighted orientational moment are already at the same
scale, indicating well-balanced weights among the six output images (Fig. S4(a)).
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Fig. S3. Comparison of validation losses when training with different loss functions. Blue: ℓ1 loss
(Eqn. S2); orange: mean square error loss (MSE, Eqn. 4). Both validation losses are calculated using
MSE loss (Eqn. 4).

(a) (b)

5 10 15 20
epochs

0

10

20

30

40

lo
ss

h1
h2
h3

h4
h5
h6

5 10 15 20
epochs

50

100

150
lo
ss

train
validation

Fig. S4. Training losses of Deep-SMOLM. (a) Training losses of Deep-SMOLM for each brightness-
weighted orientational moment image hl . (b) Training loss (Eqn. 4) and validation loss versus training
epoch.

iii. Postprocessing algorithm
We design a postprocessing algorithm to compile the six output images from the network (Fig. S5) into
a list of SMs, each with a measured 2D position r̂, intensity ŝ, and 3D orientation [θ̂, ϕ̂, Ω̂]. Since each
detected emitter is represented using a 2D Gaussian spot co-located within each of the 6 output images
hr , the postprocessing algorithm uses a pattern-matching algorithm to find Gaussian patterns within the
sum of the first three images output from the network, given by ĥ1(r) + ĥ2(r) + ĥ3(r). This summed
image represents the brightnesses (signal photons) and positions of all molecules detected by the network.
For each detected Gaussian pattern, one 7 × 7 image h̄l is cropped from each of the six images ĥl(r)

output by the network, where each is centered at the brightest pixel [x0, y0]. A threshold of 200 photons
is used to filter out emitters with low signal photons. The signal of each emitter is calculated as

ŝ =
1
A

7

∑
p=1

7

∑
k=1

3

∑
l=1

h̄k,p
l , (S3)

where [·]k,p
l represents the pixel on the kth row and the pth column of the lth cropped image h̄ and A is

the summed intensity of Gaussian kernel used in creating the ground truth image hl(r).
A simple centroid estimator is used to calculate the position of each emitter as

x̂ = E

[
x0 +

1
Aŝ

7

∑
p=1

7

∑
k=1

(p − 4)
3

∑
l=1

h̄k,p
l

]
and (S4)

ŷ = E

[
y0 +

1
Aŝ

7

∑
p=1

7

∑
k=1

(k − 4)
3

∑
l=1

h̄k,p
l

]
, (S5)
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Fig. S5. (a-f) Six Gaussian-blurred brightness-weighted orientational second-moment images ĥl(r)
output by Deep-SMOLM. Colorbars: intensity (a.u.). (1-7) Six 7 × 7 images h̄l cropped from ĥl(r), each
corresponding to one of the 7 detected emitters. Scale bars: (a-f) 500 nm, (1-7) 20 nm.

where E is the pixel size of output images (9.75 nm) and [x0, y0] is pixel index of the center of the cropped
image with respect to the original image. The orientational moments are calculated from the brightness
of six Gaussian patterns as

ml =
1

Aŝ

7

∑
p=1

7

∑
k=1

h̄k,p
l . (S6)

The estimated second-moment vectors m̂q are next projected to first-moment orientation space
[
ϕ̂, θ̂, Ω̂

]
using a weighted least-square estimator as follows:[

ϕ̂, θ̂, Ω̂
]
= arg min

{ϕ′ , θ′ , Ω′}

(
m − m(ϕ′, θ′, Ω′)

)T F
(
m − m(ϕ′, θ′, Ω′)

)
. (S7)

Note that weighting by the Fisher information matrix F ensures that more weight is given to the second
moments ml for which pixOL demonstrates superior precision [5].

3. QUANTIFYING THE PERFORMANCE OF DEEP-SMOLM

i. Mean angular standard deviation
To quantify the precision of estimating the mean orientation [θ, ϕ], we calculate the mean angular standard
deviation σδ , which is the half-angle of the uncertainty cone for estimating the mean orientation direction
[6]. It is a summary metric that combines the precision σθ of measuring θ and the standard deviation σϕ

of measuring ϕ, given by

σδ = 2 arcsin

√
sin(θ)σθσϕ

π

 , (S8)

ii. Jaccard index
To compare estimates to the ground truth, we have to pair each estimated emitter with a ground-truth
emitter. We choose to pair these emitters by minimizing the overall 2D Euclidean distance between
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matched points, as given by

[x̂r, ŷr] = arg min
{x̂r , ŷr}

∑
i

[
(x̂r

i − xi)
2 + (ŷr

i − yi)
2
]

, (S9)

where [x̂r
i , ŷr

i ] is the 2D position of the ith estimated emitter reordered based on the order of matched
ground-truth emitters, [xi, yi] is the ground truth position of the ith estimated emitter. After the matching,
estimated emitters outside a threshold distance of 150 nm from the ground truth are designated as false
positives (FP).

The Jaccard index is used to quantify the detection accuracy of an estimator. We calculate the Jaccard
index as

Jaccard =
TP

FN+ FP+ FP , (S10)

where true positive (TP) is defined as a detected emitter that has a corresponding ground truth emitter,
false negative (FN) is defined as a missing emitter, and false positive (FP) is defined as a detected emitter
that doesn’t have a corresponding ground truth emitter.

iii. Overlapping percentage of two DSFs
To calculate the overlapping percentage of two overlapping DSFs, we first convert the DSF I ∈ R56×112

of each emitter to a binary image Ib as

Ib =

{
1, if Ii ≥ 0.05 max(I)
0, if Ii < 0.05 max(I)

, (S11)

where [·]i represents the ith pixel of the I, max(·) is the maximum operator. The overlapping percentage
O is calculated based on the overlapping of binary image Ib of two emitters using

O =
2 ∑i Ib

1,i I
b
2,i

∑i Ib
1,i + ∑i Ib

2,i
× 100%, (S12)

where [·]bq,i represents the ith pixel of the binary image Ib
q for the qth emitter.

iv. Estimation bias of Deep-SMOLM
We note that Deep-SMOLM estimates exhibit a small but non-negligible bias (Fig. S6). In terms of the
estimated orientational second moments m, the bias skews towards the median value of m (Fig. S7).
To improve accuracy, one can correct the bias of the orientational second moments in postprocessing.
However, we did not implement any bias corrections due to the relatively small bias magnitude compared
to estimation precision, caused by relatively dim emitters in our SMOLM measurements.

v. Comparing Deep-SMOLM to an iterative algorithm
While we demonstrate that Deep-SMOLM has superior performance over iterative algorithms in terms of
estimation speed and ability to resolve overlapped emitters, iterative gradient descent-based algorithms
explicitly leverage an analytical forward model for image formation and Poisson shot noise. Here, we
compare Deep-SMOLM to one iterative algorithm, namely RoSEO [7], for images containing one emitter.
We noticed that the precision of the iterative algorithm varies for different DSFs, while Deep-SMOLM
always attains precisions close to the optimal (CRB) precision.

Using the pixOL DSF, Deep-SMOLM is 45%, 46%, 55% more precise than RoSEO for measuring mean
orientation angles [θ, ϕ], wobble angle Ω, and 2D position [x, y], respectively (Fig. S8(a)(i-iii)). Since the
pixOL DSF has frequent local minimum in the likelihood surface as shown in Fig. S24 in Ref. [5], we
hypothesize that the iterative algorithm has difficulty jumping out of these minima and therefore gives
worse performance. Deep-SMOLM learns the whole geometry of the likelihood surface implicitly during
training and therefore achieves optimal precision σCRB. When testing another imaging technique, the
polarized vortex DSF [8], Deep-SMOLM and the iterative algorithm exhibit similarly precise measurements
(Fig. S8(b)(i-iii)) for measuring mean orientation angles [θ, ϕ] and wobble angle Ω, and thus both achieve
optimal precision. For measuring 2D position [x, y], Deep-SMOLM is 20% more precise than RoSEO.

In terms of accuracy, when using the pixOL DSF, Deep-SMOLM is on average 39% and 56% better than
the iterative algorithm for mean orientation angle [θ, ϕ] and 2D position [x, y], respectively, and 218%
worse than the iterative algorithm for wobble angle Ω (Fig. S8(a)(iv-vi)). On the other hand for the vortex
DSF, Deep-SMOLM’s accuracy is 143%, 927%, and 21% worse than the iterative algorithm for mean
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Fig. S6. Deep-SMOLM estimation precision and accuracy. (a-d,i-l) Precision and (e-h,m-p) accuracy
for emitters with wobble angle Ω of (a-h) 0 and (i-p) 2 sr. (a,i) Mean angular standard deviation σδ,
(b,j) wobble angle precision σΩ, (c,k) position estimation precision σr , and (d,l) intensity estimation
precision σs. (e,m) (Non-negative) angular distance ξ between the estimated orientation [θ̂, ϕ̂] and
ground truth orientation [θ, ϕ] (Eqn. 5), (f,n) wobble angle bias Ω − Ω0, (g,o) 2D position bias r − r0,
and (h,p) signal photon estimation bias s − s0. At each orientation, 200 independent images were
generated for emitters with 1000 signal photons in total and 2 background photons per pixel detected.
The 3D orientations and 2D positions are estimated using Deep-SMOLM.

orientation angle, wobble angle, and 2D position, respectively (Fig. S8(b)(iv-vi)). We hypothesize that
the polarized vortex DSF has few local minima in its likelihood surface, and thus the iterative algorithm
easily achieves superior accuracy than Deep-SMOLM. In the future, it should be possible to augment
Deep-SMOLM’s post-processing algorithm to improve its accuracy (Sec. 3.iv).

vi. Fourier ring correlation
We calculate the spatial resolution σr of experimental SMOLM images using Fourier ring correlation
(FRC) as described in [9]; see Fig. S9 for the spatial resolution of the amyloid fibril SMOLM data in Fig. 4.
Emitters with signal photons larger than 600 are randomly divided into two subsets. We generate standard
SMLM images f1(r) and f2(r) from the two subsets by binning localizations using a pixel size of 5 nm;
the value of each pixel represents the number of emitters located within that pixel. We then compute the
Fourier transforms f̂1(v) and f̂2(v) of the two images and discretize Fourier space into multiple rings.
Each ring C represents a spatial frequency. FRC is calculated using the correlation of f̂1(v) and ˆf2(v)
over pixels within the ring C as

FRC(C) = ∑v∈C f̂1(v) f̂2
∗
(v)√

∑v∈C

∥∥∥ f̂1(v)
∥∥∥2

∑v∈C

∥∥∥ f̂2(v)
∥∥∥2

, (S13)

where (·)∗ represents the complex conjugate operator. To determine resolution, we use the 2σ curve as a
threshold, given by

F2σ(C) =
√

8
Np(C)

, (S14)
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Fig. S7. Deep-SMOLM estimation bias of the orientational second moments m for emitters with wob-
ble angle Ω of (a) 0 and (b) 2 sr. (1-6) Mean orientational second moment estimation bias ml − ml,GT
versus the ground truth ml,GT for the lth orientational moment ml . Each scatter point is an orientation
shown in Fig. S6. The bias is averaged over 200 independent images.

where Np(C) represent the number of pixels within ring C . We then find the spatial frequency vc of the
first crossing between FRC(C) and F2σ(C). The resolution σr is calculated as

σr =
1

2vc
. (S15)

4. FORWARDMODEL FOR GENERATING SYNTHETIC DATA

i. Forward model
The image of an SM produced by the microscope equals the sum of basis images B weighted by the
orientational second moments as shown in Eqn. 1. The lth basis matrix Bl is a concatenated image of
x- and y-polarized basis images, corresponding to the system’s response to the lth orientational second
moment (Fig. S10). To accurately generate images containing Q emitters at various positions rq (Eqn. 2),
the basis images B(r − rq) centered at arbitrary continuous 2D positions rq must be computed. To reduce
the computational burden, we use the imtranslate function in MATLAB to calculate B(r − rq) via bi-cubic
interpolation.

After generating the noiseless images using Eqn. 2, Poisson shot noise is added to each pixel indepen-
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Fig. S8. Performance of Deep-SMOLM and an iterative estimation algorithm for a single emitter with
wobble angle Ω0 = 0 when using the (a) pixOL and (b) polarized vortex [8] DSFs. (i) Mean angular
standard deviation σδ, (ii) wobble angle precision σΩ, and (iii) localization precision σr . (iv) (Non-
negative) angular distance ξ between the estimated orientation [θ̂, ϕ̂] and ground truth orientation
[θ, ϕ], (v) wobble angle bias Ω − Ω0, and (vi) 2D position bias r − r0. Purple: Deep-SMOLM, green:
RoSEO [7], black dashed: Cramér-Rao bound precision σCRB.

dently as
Ip = Poiss(I), (S16)

where Poiss(λ) corresponds to generating random values from a Poisson distribution with mean of λ.

ii. Generating training data
For one training image, the number of emitters Q is drawn from a uniform distribution of Q ∈ {7, 8, .., 15}.
A 2D position is randomly assigned to each emitter. The mean orientation µ = [µx, µy, µz]T of each
emitter is randomly generated using [10]

µx = 2x1

√
1 − x2

1 − x2
2 (S17a)

µy = 2x2

√
1 − x2

1 − x2
2 (S17b)

µz = 1 − 2(x2
1 + x2

2), (S17c)

where x1, x2 are uniformly distributed within (−1, 1) and points for which x2
1 + x2

2 ≥ 1 are rejected.
The wobble angle Ω are computed by drawing γ from a linear distribution (Eqn. S1). The signal photons
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Fig. S9. Fourier ring correlation (FRC) of the amyloid fibril SMOLM data shown in Fig. 4. Blue: FRC
FRC(C); red: threshold F2σ(C); yellow dash: first intersection between FRC(C) and F2σ(C).
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Fig. S10. Image-plane basis images Bl corresponding to a polarization-sensitive imaging system (red:
x-polarized, blue: y-polarized) with a pixOL phase mask [5] for an in-focus emitter. The image intensi-
ties are normalized relative to the brightest basis image (B1). Colorbars: normalized intensity. Scalebar:
500 nm.

of emitters have a broad distribution with mean of 1000 as show in Fig. S11(a), and all training images
have mean background of 2 photons per pixel.

We generate 30K noiseless images based on the forward model (SI section 4.i) with signal and orientation
parameters distributed as shown in Fig. S11. At each training epoch, we add Poisson shot noise to the
noiseless images (Eqn. S16) and then pass the noisy images to Deep-SMOLM. We use 90% percent of the
data for training, and remaining 10% as validation data.
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Fig. S11. (a) Signal s, (b) polar angle θ, (c) azimuthal angle ϕ, and (d) wobble angle Ω distributions for
the 30K images used to train Deep-SMOLM. The signal distribution in (a) is also used for generating
the simulated biological fibers in Fig. 3.
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iii. Generating simulated biological fibers
The designed structure is used to initialize the 2D position of each emitter, and the 3D orientation of each is
computed based on its position within the structure (Fig. S12). The signal of each emitter and background
of each simulated image have distributions similar to the training data (Sec. 4.ii and Fig. S11(a)).

(a) (b) (c)

0 20 2

0 20 40 60 8040 60 8020

0°

90°

180°

-90°

Fig. S12. Synthetic model structure of 1D fibers. (a) Ground truth polar angle θ, (b) azimuthal angle ϕ,
and (c) wobble angle Ω for each emitter along the structure.

5. EXPERIMENTAL IMAGING OF AMYLOID FIBRILS

i. Microscope calibration
We use the perfect pixOL phase mask (Fig. S13(a)) for generating all synthetic data used in Fig. 2 and
Fig. 3. However, to improve pixOL DSF performance in our microscope [5], we use the conjugate pixOL
phase mask (pixOL*, Fig. S13(b)) to collect and analyze experimental amyloid fibril data (Fig. 4).
We calibrate the imaging model to the imaging system’s DSF by using fluorescent beads (100-nm

diameter red 580/605 FluoSpheres, Invitrogen F8801). A phase-retrieval algorithm [11] is used to retrieve
the experimental phase mask. To accurately characterize optical aberrations, the phase masks of the two
polarized channels are estimated independently (Fig. S13(c,d)). These are consequently used to simulate
images collected by each polarized channel for training Deep-SMOLM (Sec. 4.ii).

-2

0

2

(a) (b) (c) (d)

Fig. S13. Calibration of the conjugate pixOL phase mask pixOL* [5]. (a) Perfect pixOL phase mask.
(b) Perfect conjugate pixOL* of the pixOL phase mask. (c,d) Calibrated experimental pupil phase pat-
terns from the (c) x and (d) y polarization channels. Colorbar: phase (rad).

ii. Preparation of amyloid aggregates
We follow existing protocols [12, 13] for preparing amyloid fibrils. To aggregate the fibrils, we add 10 µM
monomeric protein precursors (42 amino-acid residue amyloid-β peptide) to an aggregation buffer of
phosphate-buffered saline (PBS, pH 7.4), 150 mM NaCl, and 50 mM Na3PO4. We placed the mixture into
an incubator at 37 ◦C with 200 rpm agitation for 24 h.
To image the amyloid fibrils, 10 µL the aggregated structures were placed into an ozone-cleaned cell

culture chamber (Cellvis, C8-1.5H-N, No. 1.5H, 170 ± 5 µm thickness) for 1 h immediately after the
incubation. After one hour, 200 µL of PBS solution containing 2.4 µM Nile Red (NR, Fisher Scientific,
AC415711000) was placed into the amyloid-absorbed chambers for transient amyloid binding (TAB) [12]
single-molecule orientation localization microscopy (SMOLM).
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Fig. S14. Imaging system schematic. Single-molecule (SM) fluorescence is collected by the objective. A
polarization-sensitive 4f system, comprising 3 lenses (lenses 1-3) and a polarizing beamsplitter (PBS), is
added after the microscope’s intermediate image plane (IIP). The PBS splits the light into x-polarized
(red) and y-polarized (cyan) fluorescence. A pyramid mirror is used to reflect light from the two chan-
nels onto a spatial light modulator (SLM, top view) placed at the conjugate back focal plane (BFP) of
the microscope (side views: insets ii and iii). The pixOL* phase mask (inset i) is loaded onto the SLM to
modulate the phase of both channels simultaneously. Lenses 2 and 3 focus the x- and y- polarized fluo-
rescence onto two non-overlapping regions of a single CMOS camera. Arrows denote the polarization
of the light in each channel. M1-6, mirrors.

iii. Optical instrumentation and imaging procedure
The pixOL microscope is implemented using a home-built epifluorescence microscope as described
previously [5, 13, 14]. Briefly, a polarization-resolved 4f imaging system, consisting of relay lenses (lenses
1-3) and a polarizing beamsplitter, is appended to a fluorescence microscope to project two polarized
images onto separate regions of a camera (Fig. S14). A spatial light modulator (SLM, Meadowlark Optics,
256 XY Phase Series) is placed at the conjugate back focal plane (BFP) of the imaging system and loaded
with the pixOL* phase mask (Fig. S14(i)) to modulate the x- and y-polarized fluorescence simultaneously
(Fig. S14(ii,iii)).

The amyloid fibril is imaged with a 100× 1.4 NA oil-immersion objective lens (Olympus, UPlan-
SApo 100×). The samples were excited using a 561-nm circularly polarized laser (Coherent Sapphire,
1533 W/cm2 peak intensity) tilted at ~30◦ from normal to excite both in-plane and out-of-plane oriented
NRs. Fluorescence was collected by the same objective and filtered by a dichroic beamsplitter (Semrock,
Di03-R488/561) and a bandpass filter (Semrock, FF01-523/610). Image stacks of 4,000 frames with 80 ms
exposure were recorded.

iv. Two-channel image registration
Images simultaneously captured by the camera are required to registered before processing by Deep-
SMOLM. The geometric transformation between the two channels was first roughly calibrated using
fluorescent beads and then finely tuned using single-molecule (SM) imaging of amyloid fibrils. The
fluorescent beads (Thermo Fisher Scientific, FluoSpheres, 0.1 µm, 580/605, F8801) are spin-coated on
an ozone-cleaned coverslip (Marienfeld, No. 1.5H, 22 × 22 mm, 170 ± 5 µm thickness) and imaged
using a polarization-sensitive standard DSF by turning off the pixOL* phase mask on the SLM shown
in Fig. S14. We also captured 1,000 frames of single-molecule blinking on amyloid fibrils using the
polarized standard DSF. The ThunderSTORM plugin [15] within ImageJ is used to localize the beads
and single molecules within the two channels separately. The 2D bead positions across the two chan-
nels are then paired and used for calculating a global 2D polynomial transformation function using
images.geotrans.PolynomialTransformation2D function in MATLAB. We then use the transformation func-
tion to pair single molecules on amyloid fibrils, and subsequently calculate a more accurate polynomial
transformation function using the paired SM localizations.
To generate paired images for Deep-SMOLM estimation, we choose a field of view (FOV) within the

y-polarized channel. For each pixel in the FOV in the y channel, we find the nearest corresponding
pixel in the x channel using the transformation function and assemble these pixels together to form a
transformed x-polarized image that is registered to the y-polarized image.
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Fig. S15. Deep-SMOLM performance for estimating overlapping emitters with 500 detected signal
photons and 2 background photons per pixel. (a) Deep-SMOLM (black) Jaccard index and the corre-
sponding number of (orange solid) true-positive (TP), (orange dash) false-negative (FN), and (orange
dot) false-positive (FP) emitters. (b) Deep-SMOLM (black) precision σr and (orange) accuracy r − r0 for
estimating 2D position r. (c) Deep-SMOLM (black) orientation precision σξ and (orange) absolute mean
orientation bias ξ (Eqn. 5). (d) Deep-SMOLM (black) precision σΩ and (orange) accuracy Ω − Ω0 for
measuring wobble angle Ω.
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Fig. S16. Deep-SMOLM estimation performance for imaging a model structure of 1D fibers as quan-
tified using (a) Jaccard index, (b) estimation precision σr of 2D position, (c) estimation precision σξ of
mean orientation angles [θ, ϕ], and (d) estimation precision σΩ of wobble angle Ω.
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Fig. S17. Deep-SMOLM 5D imaging of a model structure of 1D fibers with a 2 sr wobble angle.
(a)(top) Simulated raw image compared to (bottom) images reconstructed from Deep-SMOLM esti-
mates. Magenta dots: center position of each SM. (b) Synthetic structure containing nine 1D fibers
color-coded with the ground truth polar angle θGT. (c) Deep-SMOLM measured wobble angle Ω̂
(ground truth ΩGT = 2 sr). (d) Estimated polar angle θ̂. (e) Emitters within the white box shown
in (b). Colormap: estimated signals ŝ (photons). (f) Estimated azimuthal angle ϕ̂, where the length
and direction of each line depict the magnitude of the in-plane orientation sin θ̂ and direction of
estimated azimuthal angle ϕ̂, respectively. The ground-truth orientations are perpendicular to the
fibers. (g) Wobble angle estimation bias

∣∣Ω̂ − 2
∣∣ versus mean orientation estimation bias ξ (Eqn. 5).

(Right) Distribution of wobble angle estimation bias and (top) mean orientation estimation bias. Scale-
bars: (c,f) 200 nm, (e) 50 nm.

25 1000 1500 200030 35

(a) (b)

Fig. S18. Example SMLM reconstructions of amyloid fibrils. (a) A field of view with mostly separate
amyloid fibrils. (b) A field of view with intertwined amyloid fibrils. Colorbars: signal photons for each
detected emitter. Each SM is represented as a 2 nm filled circle. Scale bar: 1 µm.
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Fig. S19. Apparent wobble of fluorescent beads measured by Deep-SMOLM. We measure a mean
wobble angle of 1.45π sr, which is close to that of isotropic emitters (Ω = 2π sr) and is consistent with
previous pixOL measurements of fluorescent beads using an iterative algorithm [5].
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Visualization 1 SM detection and position-orientation estimation using Deep-SMOLM for simulated biological fibers
shown in Fig. 3. (Top) Simulated raw polarized images (red: x-polarized and blue: y-polarized) are
compared to (bottom) images reconstructed using the 3D orientations and 2D positions estimated by
Deep-SMOLM. Magenta dots: center position of each SM. Colorbar: photons/pixel. Scale bar: 1 µm.

Visualization 2 SM detection and position-orientation estimation using Deep-SMOLM for experimental amyloid fibrils
shown in Fig. S18(a). (Top) Polarized images (red: x-polarized and blue: y-polarized) collected from the
microscope are compared to (bottom) images reconstructed using the 3D orientations and 2D positions
estimated by Deep-SMOLM. Colorbar: photons/pixel. Scale bar: 1 µm.

Visualization 3 SM detection and position-orientation estimation using Deep-SMOLM for experimental intertwined
amyloid fibrils shown in Fig. S18(b). (Top) Polarized images (red: x-polarized and blue: y-polarized)
collected from the microscope are compared to (bottom) images reconstructed using the 3D orientations
and 2D positions estimated by Deep-SMOLM. Colorbar: photons/pixel. Scale bar: 1 µm.
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