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1. QUANTUM JUMP AND CONDITIONAL HAMILTONIAN

The non-Hermitian Hamiltonian of the system is

where j =0,1,2,...,n, and we assume that # = 1, H is the Hamiltonian for the closed system.

The probabilities of an emission from the system at time t and during the time duration At are

AP; = kAt (8)|a]a|p(t)),

AP = YmSH (1) 0}, bl (1)),

where j =0,1,2, ..., n. So, the total probability for the quantum jump happening is APs = 2;1:0 AP+ APy,

(6))

(2)

(3)

And in fact, in the adiabatic process, the mechanical mode is in dark state, the probability of quantum happens for the mechanical

mode will be far less than 1, which can be ignored in the experiment.

If there is an emission from the cavity a;, the system jumps to the renormalized state

If there is an emission from the mechanical mode by, the system jumps to the renormalized state

buly (1))
((8)[0,bm (1))

@

(5)
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If there is no emission, the system will evolve depending on the non-Hermitian Hamiltonian as

exp (—iHcAL)|p(t))
V() exp (—iH AN exp (—iHeAD (1))
(1 —iHA)[p(t))
V(0] — iHA)T(1 — iHAL) (1))
(1— Aty Fata; — AR bl by — iAtH) [ (1)
VO = iHA)T (1 — iHAL [¢(t))
(1= Aty Fata; — A% bl by — iAtH) (1))

V1= Moy (0] WM )) = Bt (p(8) B b (1))
ita;

Q

Q

(1-atyl Sata; — AtGbY by — iAH) (1))
_ 6
\/1 — AP ©)
where we have got rid of the high-order terms of At.
Then, after the time duration At, the density matrix will become
| (t+ AD) (p(t + Ab)]
t af b t
- ZAPM + ap, O WO, o
N ®)lafaly(n) ($ ()bl | (2))
. (17AP)(1fAtZ" 07/ B — AR BN b — iNEH) [ (1)) (p ()] (1 — AL LT %a aj — AR DY by + iAtH)
° 1— AP
n
N ALY k| p(8) (1) 1a] + Abymbu (D) (9 (8)|B, ®)
j=0
i ; Kt =Ko
+ [p(O) ()] — iMH[p (D) (P(8)] + itlp(6)) (w(O)[H — At Y S-aja;lp(6)) (w(5) — Alp(6) (p(B)] ) —d]a;
j=0 j=0
AP TRt G Ym £t 7
AT Bl (1)) (p(6)] — AT (1) (1) B
The (7) and (8) come from the quantum jump, and the master equation can be written as
Ap S Y
i Y 808} + Ymbmpby, )
j=0
;i
+ —iHp+ipH ];) Ejﬁ}rﬁ]p -y 5 pifa;
_ ’Ym Imptp t B ’Yzm pl;;l;m
K PO Ay oA At oA
= —ilHp]+ ) L (2a00] — afajo — pifa) + %(%mpb;rn — bF bup — pbF ) (10)
j=0

In the basis of the bare state, we can calculate the master equation with the rotating wave approximation, then we can replace H
with the linearized interaction Hamiltonian H;, where H; = 2;7:0 g (ﬁ}rf)m + BL@) . So that, if we eliminate the processes in which the

quantum jump happened by applying the post selection, the non-Hermitian conditional Hamiltonian can be used to describe the
evolution of the system as:

Ap A
= =il ] an
Where H, = 27 0 iz' &*ﬁ] 17"’ b}, by, + Hy. In fact, if only considering the coherent decay, the process is a coherent nonunitary

evolution, it can also be described by the Schrodinger equation with the conditional Hamiltonian.
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2. THE CONDITIONAL HAMILTONIAN IN THE ADIABATIC EVOLUTION

Under the condition of g; > «; (i = 1,2, ...,n), for simplicity, we first neglect x; and only consider the damping of xy and ;. In the
basis of [100...0)4,4;..4,5,, [010...0) g, . .a,byy s 1000...1) g0, a1, the conditional Hamiltonian is

_i% 0o --- 0 0
0 0 --- 0 g
He = : I : 12
0 0 --- 0 o
L g0 &1 o g %]

If we transform the basis to [¢1(2)), |¢2(£)) ... |Pu+2(£)), where |1 (£)) to |¢n(t)) are n dark states and |¢,,1(t)) and |¢,42(t)) are
two bright states, the conditional Hamiltonian can be transformed as

_ iog? _ i%0808182 _ i%0808183 ... _ i%080818n rr(Ln+1) (Ln+2)
2s2 2535, 2515283 2518, 15, c ¢
_ iK0808182 _ ix0g3e3 _ iKogge8s L _ i%0gfgagn Fr(2n+1) ~(2n+2)
2525, 25252 2515353 2518251-15n ¢ ¢
_ iKogog183 _ i%0838283 _ k08583 L. i%083858n ~(3n+1) 7 (3n+2)
2518283 2518353 25353 2525351150 ¢ ¢
Al(n42) x (n+2 . . :
(s2)x(r42) _ | ‘2 ‘2 o 13)
_ iK0go&18n—1  _ iK083828n—1 _ iK083838n—1 o ixogign—18n  pp(n=Ln+1)  m(n—1n+2)
251Sn-25n-1 25152812501 25283512501 25,252 1Sy ¢ ¢
_ iK0g0g18n _ iKog3828n _ ixogdgsgn .. _ i%ogags A(nn+1) rr(nn+2)
2515418 2515281151 2528351 -15n 253,7153, ¢ ¢
~(n+1,1) ~(n+1,2) ~(n+1,3) ~(n+1,n) rr(n+1n+1) 4 (n+1,n42)
Hc Hc Hc e Hc c c
(n+2,1) (n+2,2) (n+2,3) r(n+2,n) Ar(n+2,n+1)  H(n+2,n+2)
c c c e c c c

where (ﬁc[(71+2)><(n+2)])ij = (¢i| Fc|oj).

In the adiabatic process, initially, if the system is in dark state, there will not be excitations with the bright states, so that, the
coherent decay evolution of the system will only depend on the first # rows and # columns of the conditional Hamiltonian. We extract
the first n rows and n columns of the matrix of H, as

L, , . . -
_ Ko&q _ K0&08182 _ 1K0&08183 . _ 1K0&0818n
252 2s2s; 2515253 2515,_15n
. L L, .
_ K0808182 _ ix0g583 _ K08p&283 L iK0g3828n
2525, 25252 2515355 251525, -15n
, . ] et .
__ K0808183 _ K08p&283 _ iK08083 L iK083838n
A(nxn) 2515283 2515353 25352 2525381—15n
. =
. L, . o,
_ 08081811 _ K0&p&28n—1 _ lKogﬁgsg;H L _ 1K0&p&n—18n
2515,-28n-1 25152812511 25253812511 25,252 _1Sn
, ixog? o2 ol
_ 1K080818n _ K080 828n __ %085 838&n _ K0808&n
25151-15u 251525n—15u 2525351—15u 252 2
iKO

where M = (1 — f—g)\%)(q)o\ and |¢g) = \/117[4)51),4)51),4)?),...,¢£,]>]T, where 4)1(1) (i=1,2,...,n)is the first value of |¢;).

3. THE CHARACTERISTICS OF V MATRIX

V(t) matrix is defined as V() = dl’gt(t) U(t) and a(t) = Ut (t)C(t), and there is

S = —[2A) V(D)) (15)

Because %[U*(t)ll(t)] =0, so we can get dl{;tm uc) +ut(t) dwft) = 0, then there is V(t) + V*(t) = 0. Since that, the matrix V (t)

d
is real, we have VT (t) = VT (), so we can get Vii(t) + Vji(t) = 0. If kg = O, there is




Letter ‘

So that, the function of V (#) is only to redistribute of the populations in every ¢;(t).
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d &, " du; (t)
r MO WO
n n
2y (1)) Vij(t)ay(1)]
i=1 =1
n
2 ) Vi(t)ai(t)ay(t)
ij=1
0 (16)



