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Supplementary Note 1: Universal full Poincaré generator and full Poincaré beam 
polarimetry 

 

There are two types of systems that can generate a full Poincaré beam (FPB) [1–3]. The first 
type – shown in Supplementary Figure 1a – has the functionality of transferring fixed (or 
limited state) state of polarisation (SOP) into a FPB. A typical system configuration is based 
on two liquid crystal spatial light modulators (SLMs) or a system using multiple passes from a 
single SLM [4]. Under such a geometry, due to the SLM having a uniformly distributed 
slow/fast axis orientation, it is strongly polarisation dependent. It can be used to generate the 
FPB to some extent but cannot meet the requirements of generating a FPB with an arbitrary 
incident SOP. For example, if we use a uniform linear SOP that is aligned in the same direction 
as the fast axis orientation of the first SLM, then the modulation of such a pass would lose all 
functionality. Hence with only one degree of freedom introduced by the second SLM (or the 
second pass) an arbitrary SOP cannot be generated [4,5]. Under our definition in the main 
article, such a system cannot be referred to as a universal full Poincare generator (UFPG). 

 

The second type of system is based on the functionality of transferring each arbitrary SOP into 
a different FPB (see Supplementary Figure 1b), which is the UFPG we defined above. It can 
be a linear retarder array – such as the GRIN lens we used in the main article; or a mixed 
diattenuator array (see Supplementary Figure 1b). The former is a combination of all effective 
fast axis orientations (θ from 0° to 180°) and retardance values (δ from 0° to 180°). The latter 
contains all possibilities of the eigenvector (determined via transmission axis orientation θ’ and 
eigenvector elliptical ratio b/a). The UFPG (GRIN lens) that we used in the main article, has 
spatially variant birefringence that provides, in effect, the full range of retardances required 
with order number two (see Supplementary Figure 1c). Note that the UFPG system is not 
limited to these two types but could also in principle be generated by other mechanisms. 

 



 
Fig. S1. Two types of systems that can generate a FPB. (a) Traditional FPB generation methods 
– restricted by the ability of generating a FPB from only a fixed incident SOP. The device 
commonly consists of a mixed-layered retarder array, such as multiple SLMs. (b) The UFPG as 
defined in this paper – any pure incident SOP can be used to generate a different FPB. The 
detailed mathematical proof of such property can be found in Method. Two typical examples are 
given, one is a linear retarder array (with both the value of the eigenvector and eigenvalue 
ranging from 0° to 180°) and the second is a mixed diattenuator array (with all possible 
eigenvectors, θ’ ranging from 0° to 180°, and b/a from 1 to +∞). (c) The order number of the 
UFPG system corresponding to the order of the underlying FPB. A practical implementation of 
a UFPG through a GRIN lens, with order number two, consisting of linear retarders. Here, the 
full range of retardances and angles is provided through the spatial variation of birefringence in 
the GRIN medium [6–8].  



 

There exist various methods of FPB polarimetry ranging from Stokes vector polarimeter to 
Mueller matrix polarimeter [9–14], utilizing devices include stress engineered optics (SEO), 
GRIN lenses, multi-core fibres (MCF), and uniaxial crystals. However, their processes of 
Stokes vector retrieval rely upon matrix calculation (domain 1 in Supplementary Figure 2), the 
same as other non-FPB polarimetry [9]. Our new paradigm is in a separate domain (domain 2 
in Supplementary Figure 2) that parallels the traditional one. As shown in the figure, existing 
works (within the yellow region) are based on matrix calculation; however, a UFPG based 
system can enable a new paradigm (within the purple region) via image processing (such as 
machine learning (ML)), which uses inference from a physical model of locating the brightest 
points to retrieve Stokes vector. To the best of our knowledge, such a UFPG-based paradigm 
has not been shown, even though similar devices for domain 2 (UFPG) have been harnessed 
for methods in domain 1. Domain 2 offers two important features – 1) circumventing the error 
amplification factor (see details in Supplementary Note 3) and 2) an ‘end to end’ solution for 
SOP retrieval (see details in Supplementary Note 4). 

 

 
Fig. S2. Two domains of current Stokes polarimetry. Domain 1 consists of matrix calculation-
based Stokes retrieval approaches, while domain 2 utilizes imaging processing to retrieve Stokes 
vector, with an emphasis on inference from clear physical information. 



 
 

Supplementary Note 2: Experimental set-up and operating principles of universal full 
Poincaré generator polarimetry 
 
The experiments to validate the feasibility of the PFG based paradigm were performed with the 
set-up that consists of a spatial light modulator (SLM, Hamamatsu, X10468−02) based 
polarisation state generator (PSG) and a GRIN lens-based polarisation state analyser (PSA) 
(Supplementary Figure 3a). We used a LED (3 W, 633 nm, Δλ = 20 nm) as the illumination 
source, then the light beam passed through a polariser (Thorlabs, LPVIS050) to generate linear 
polarised light at 45° with respect to the slow (modulating) axis orientation of the SLM. Here 
we adopted the double-path geometry using a single SLM according to the method in Ref5, in 
order to generate an arbitrary SOP. This PSG (yellow dashed box) was used to generate training 
data for the convolutional neural network to reconstruct the polarisation filter (PF) determined 
vector map (see later sections). On the analysis side (blue dashed box), the UFPG system we 
used was a GRIN lens (Femto Technology Co. Ltd., G-B161157-S1484, NA=0.1, Pitch=2, the 
same as that used in Ref8) followed by a fixed circular polariser (CP) (Thorlabs, CP1L633), 
which formed the PSA. The intensity images were obtained by a camera (Thorlabs, 
DCC3240N). After the network was trained, the PSG was removed from the system before 
conducting the actual sensing experiments. As we have discussed before, the order number of 
the UFPG is extensible and the distribution of retardance (or diattentuation) is not confined to 
a particular physical arrangement. Supplementary Figure 3b shows the link between an UFPG 
with order number two and a GRIN lens, which was used throughout this paper. In the GRIN 
lens, the retardances are arranged with circular symmetry, rather than the conceptual Cartesian 
arrangement shown in Fig. 1 in the main article. Note a pinhole is utilized at the focal plane of 
the UFPG system, based on which we can assume the incident SOP is uniform before being 
analysed by the polarimeter. In this work, we focus on 2D polarimetry. 

 
The UFPG paradigm is based on the concept of ‘full generation/analysis’. As a UFPG is a 
complete system that contains all possible SOP generating channels, conceptually through a 
continuous array of polarisation elements, it can create a FPB in a single shot. Those channels 
can also perform ‘full analysis’ of any incident SOP, in effect through the array of polarisation 
elements. A GRIN lens with appropriately chosen properties can provide a practical UFPG, as 
it behaves as a spatially variant waveplate, due to its intrinsic birefringence. For any uniform 
SOP at the GRIN lens input, a FPB will be created at the GRIN lens output. The PF following 
the GRIN lens post-selects the chosen PF eigenstate, effectively by projecting the output state 
at each field point onto the eigenstate. This creates an intensity distribution that is characteristic 
of the state present at the GRIN lens input. The brightest points of this distribution correspond 
to the points at which the GRIN lens outputs the SOP equivalent to the PF eigenstate, while the 
same position of the brightest point on the PF-determined map (which is a certain vector field 
generated via the PF eigenstate incident GRIN lens under the local coordinate system) is the 
incident SOP. If the input state changes, then the positions of the brightest points change. There 
exists therefore a mapping between the input states and the output intensity distribution. For 
instance, when a 45° linear SOP illuminates the GRIN lens before being filtered by a PF that 
contains the eigenstate of right hand circular (RC) SOP, the final intensity would have two 
brightest points at the locations with exact RC-SOP (the number of points is determined by the 
order of UFPG; for the GRIN lens there are two points). Note that the PF-determined map can 
only be changed through using a different PF eigenstate, which would lead to a change in the 
locations of the brightest points and the number of the points on the intensity distribution for a 
given input SOP. It should be emphasised again that this new paradigm directly determines the 
SOP from the intensity pattern without recourse to conventional instrument matrix calculations.  
 



 
Fig. S3. Experimental setup of the UFPG polarimeter. (a) Sketch of experiment: P, CP: fixed 
polariser; QWP: rotating quarter waveplate; WP: quarter waveplate (note here we illustrate using 
a transmission geometry the both SLM parts were actually two adjacent sections of a single 
SLM; in practice, the WP was transited twice in a reflection geometry to act as a half wave 
plate5); UFPG: universal full Poincare generator, which is in this case a GRIN lens; PSG and 
PFG based polarimetry are shown in the dashed yellow/blue circles. (b) Sketch for the 
illustration of two UFPG units within a GRIN lens. In this manifestation of the UFPG, the 
retardance is arranged in a polar coordinate system8. Before the UFPG there exists a pinhole 
filtering system (PS). The black dotted line shows the line of symmetry separating two UFPG 
units. 

 
 
Supplementary Note 3: Stokes vector measurement 

 
In traditional approaches to Stokes vector measurement, intensities are recorded on the detector 
for calculation of the target SOPs [15–19]. The core equations for calculation of the Stokes 
vector are shown in Eq. (3-1), where 𝑆𝑆𝑖𝑖𝑖𝑖  is the Stokes vector of the incident light field, 
consisting of 4 components (S0, S1, S2, S3). 𝐴𝐴 is an n×4 matrix known as the instrument matrix, 
which is determined by the optical properties of the measurement system [15–19]. 𝐼𝐼  is the 
intensity information recorded by the detector.  

  
𝐼𝐼 = 𝐴𝐴 ∙ 𝑆𝑆𝑖𝑖𝑖𝑖 , 

 
𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴) ∙ 𝐼𝐼. 

 

 
 

(S1) 

In practice, we also need to consider the occurrence of errors that would affect the measurement 
precision and accuracy [15–23]. These two parameters will both, however, be affected via 
systematic errors ΔA, ΔI or random errors δA, δI. Hence three key processes – denoising, 
optimisation, and calibration – have been investigated and explored by numerous researchers 



in the quest to enhance the precision and accuracy of a polarisation sensing system by 
eliminating these errors  [15–23].  

 
Amongst the three processes, optimisation is used to deal with the instrument matrix A – which 
determines the amplitude of the error transformation of a designed polarisation sensing 
system [15–18]. Several criteria such as the condition number (CN) have been put forward to 
evaluate such an optimisation  [15–18]. In the context of polarisation sensing, this is defined as 
 

  
𝐶𝐶𝐶𝐶 (𝐴𝐴) = ‖𝐴𝐴‖ ∙ ‖𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴)‖, 

 
max(𝜇𝜇𝑖𝑖) = ‖𝐴𝐴‖, 

 
𝐶𝐶𝐶𝐶 (𝐴𝐴) =

𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

. 

 

 
 
 

(S2) 

 
Here, ‖. ‖  represents the matrix L-2 norm, A is the instrument matrix during Stokes 
measurements; 𝜇𝜇𝑖𝑖  (𝑖𝑖 = 1,2,3 … ) are the singular values of matrix A. 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚  are the 
minimum and maximum values of 𝜇𝜇𝑖𝑖. For a complete calculation of 𝑆𝑆𝑖𝑖𝑖𝑖, at least four intensity 
parameters are required, which is determined by the component number of the Stokes vector. 
To calculate four unknown parameters, there needs to be at least four equations, hence the 
instrument matrix A cannot be a single column/row  [15–18]. Additionally, as each row of A is 
related to a different analysis state, any combination of the related vectors cannot be mutually 
orthogonal. Hence for polarisation sensing, the minimum CN  value is √3 , which is the 
theoretical limit with considerations of a systematic error amplification  [15–18], as opposed to 
the minimum CN value (CN = 1) without matrix inversion induced systematic amplification. 
However, in the new paradigm, we can avoid any such issues related to this matrix inversion 
though the use of a different computational process that is based upon the physical phenomenon 
of the mapping of polarisation state to an intensity pattern by the UFPG. As mentioned in main 
article, to deal with the additional errors such as temporal and spatial errors and noise, we 
introduce machine learning (ML) based ‘end to end’ method to deal all factors in one step. 
Details can be found in Supplementary Note 4.  
 
 
Supplementary Note 4: Machine learning based image processing approach for 
polarisation estimation 

 
For a chosen combination of UFPG and PF, there is a unique correspondence between the input 
SOP and the intensity pattern at the detector. Conceptually, we can explain intuitively that the 
positions of the brightest points encode the input SOP. However, practically, we wish to use 
the whole of the intensity pattern in order to estimate the input state, to ensure highest accuracy, 
particularly in the presence of noise. Furthermore, the exact mapping between the input state 
and intensity pattern is not perfectly known in advance, due to variations in system 
configuration as well as spatial and temporal noise. Rather than performing denoising or 
calibration step, we adopted a convolutional neural network (CNN) to approach the estimation 
holistically [24,25]. A U-Net like network has been chosen [26–28], due to its robustness to 
image noise, stability towards hyperparameter changing, and promising detection performance. 
U-Net is a non-polarisation-specific network, which has been widely used in recent ML 
research, and has hence been widely validated and applied either in scientific research or 
applications in industry [26]. It is therefore well-suited for further duplication, dissemination, 
and enhancement if compared with the specifically designed polarisation-oriented networks 



that are currently being applied to polarisation imaging [23]. For ML based image processing, 
we are dealing with clear physical information – brightest point locations – to infer directly the 
Stokes vector. Here the different locations of the brightest points represent different SOPs. Such 
a well-defined physical foundation contributes to a clear target for a physical inference ML 
process, which goes beyond a pure black box approach.  

 
The main process of the approach (when conducting real sensing) is depicted in Supplementary 
Figure 4a and 4b with a simple flow chart. The imaging processing pipeline comprises three 
steps: 1) the obtained input intensity images (with unknown SOP) are fed into the CNN and the 
areas around the brightest points are highlighted in the output heatmap (which represent 
probable locations of the peak); 2) refined estimates of the brightest points are localised from 
the heatmap using the centrosymmetric constraint, due to the symmetry of the GRIN lens; 3) 
the positions are converted via a look-up table (LUT) to the SOPs. The target SOP can then be 
obtained as the output (see Supplementary Figure 4c for the three steps). The LUT can be built 
offline prior to the processing procedure and is generated from simulation images with known 
SOPs. This enables fast and efficient SOP prediction from the brightest points during inference. 
Note the first step belongs to ‘neural network’, second and third steps belongs to ‘image post-
processing’ (in the main article). 

 
This network follows an encoder-decoder structure (see Supplementary Figure 4b), where the 
encoder down-samples the input to extract deeper features, and the decoder up-samples the 
feature map to integrate information from the encoder at different scales. After the last 
convolutional layer, a heatmap with pixel values ranging from 0.0-1.0 is generated, which can 
be seen as a probability map for the brightest points. As the number of possible brightest point 
locations increases along with the resolution increase, the input image resolution determines 
the upper bound of SOP prediction precision. 384×384 resolution was adopted for the input 
intensity image to reach a trade-off between prediction precision, training convergence, and 
inference speed. Other resolutions including 256×256 and 512×512 have also been tested, as 
shown in Table 3. 57877 pairs of simulated/experimental images were used to generate the 
training set. The simulated images were calculated via a GRIN lens retardance model using the 
approaches described in Ref [8] as the ground truth. The experimental images were acquired 
with known SOP input using the system shown in Supplementary Figure 4a. We generated the 
data by quasi-uniformly sampling on the Poincaré sphere, in order to cover as large a parameter 
range as possible. The locations of the brightest points were directly found from the simulated 
images, followed by a Gaussian distribution to indicate the local area around them to model the 
expected network output heatmap. Then pairs of noisy intensity images and heatmaps that have 
a one-to-one correspondence, were used to train the network. To increase the training set size 
as well as to simulate data conditions in real-world applications, data augmentation [29] 
including contrast and brightness changes have been carried out to improve the robustness of 
the network. 

 
During the training, the network was trained with a stochastic gradient descent (SGD) 
optimizer [30] using gradients computed with backpropagation [31], with batch size set to 4, 
learning rate 0.001, momentum 0.9. A weighted L-2 loss function (Eq. (4-1)) was adopted to 
deal with the “imbalanced classification” problem, since the bright area only takes up a small 
part of the image: 



  
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
1

2𝑁𝑁
�𝑤𝑤𝑖𝑖(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖∗)2
𝑁𝑁−1

𝑖𝑖=0

+ 𝜆𝜆‖𝐴𝐴‖2 , 

 
 
 

(S3) 

where 𝑁𝑁  is the total number of pixels, 𝑣𝑣𝑖𝑖  the predicted value of the 𝑖𝑖  th pixel, and 𝑣𝑣𝑖𝑖∗  the 
ground truth value of the 𝑖𝑖 th pixel. 𝑤𝑤𝑖𝑖  is the weight of the 𝑖𝑖 th pixel, which was set to 50 if 
𝑣𝑣𝑖𝑖∗ > 0 , otherwise 1. 𝜆𝜆 = 0.0005  is the coefficient of the regulariser 𝐴𝐴 , where 𝐴𝐴 =
 [𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑘𝑘] is the set of all parameters in the network. The network was trained over 5 
epochs and converged in one hour on a PC (OS: Ubuntu 16.04; CPU: i7-4770; GPU: NVIDA 
GTX 1080 Ti).  

 
As it is shown in the main article, we demonstrate the feasibility of using the proposed ML 
based method to estimate the SOP. This is a highly efficient image retrieval system: the 
brightest points function as image signatures that are unique to SOPs in certain ranges, so the 
problem of predicting SOPs is simplified and converted to a search task. There are several 
advantages of this approach: 1) preparation of the training set is straightforward and it is easy 
to cover an adequate domain; 2) finding the SOP takes only 30 ms on a normal desktop GPU, 
enabling real-time online SOP detection; 3) the network is invulnerable to temporal/spatial 
noise from the image acquisition system. Future work will centre around expanding the 
capability of the proposed ML based approach to enable robust and accurate real-world 
applications.  

 
As the new paradigm is based on estimation the brightest point on the image, there is an intrinsic 
link between the image resolution (with pixel number 𝑛𝑛 × 𝑛𝑛) and the polarisation resolution 
(sensitivity 𝑆𝑆𝑝𝑝) of the system. This hardware parameter could be used to indicate the maximum 
sensitivity that the system can perform, assuming other noise sources are minimised, which can 
guide the training process of the CNN with respect to the best effective dataset. This sensitivity 
can be calculated as 

  

𝑆𝑆𝑝𝑝 = 𝐾𝐾 · �
𝜂𝜂
𝑅𝑅

𝐷𝐷𝑠𝑠
 , 

 
 

(S4) 

where 𝐷𝐷𝑠𝑠 is the dimension of the Stokes vector, 𝑅𝑅 = 𝜋𝜋∙𝑛𝑛2

4
 represents the effective pixel number 

(in the GRIN lens based UFPG, we have a circular area). K is a constant parameter. As the 
topological order 𝜂𝜂 of the GRIN lens is 2, there would in effect be half the number of pixels to 
determine 𝑆𝑆𝑝𝑝. Note here we assume the sampling depth is sufficient and the non-linearity of the 
system is low. Following the above equation, we could calculate and plot the theoretical 
relationship between 𝑆𝑆𝑝𝑝 and intensity image with resolution n × n, if systematic and random 
errors are minimised (see Supplementary Figure 4d). 𝑆𝑆𝑝𝑝  can be boosted if we use a higher 
camera pixel resolution. 

 



 
Fig. S4. Schematic of the machine learning based image processing approach to identify the 
unknown SOP. (a) Simple flow chart of the UFPG based paradigm enabled by ML. (b) ML 
implementation process: intensity distribution images are used as the network input, which then 
pass through the CNN (encoder plus decoder) then to find the brightest point locations and 
predict the unknown SOP. (c) One practical example of using the CNN based imaging process 
approach to acquire the unknown SOP from an experimental intensity distribution image. (d) 



The theoretical relationship between the sensitivity of the UFPG and the pixel number of the 
acquired image (an image with pixel number n × n). 

 
Compared with traditional Stokes retrieval methods, this new imaging processing framework 
provides advances. The traditional approach treats denoising, optimisation and calibration as 
separately optimised processes. However, this traditional approach does not consider the 
interaction between such three processes, even though their effects on the overall performance 
of the polarimeter are not independent. Calibration methods can also be laborious, requiring 
different capabilities to conduct and complete. Those points strongly affect the performance 
and robustness of the polarimeter, limiting their broader usage. By remodelling these three 
processes into a single step, as well as considering other residual errors sources and their 
interactions in an ‘end-to-end’ manner, our new paradigm provides polarimetry with robust 
performance. The future challenge for our approach might be how to bridge the gap between a 
trained model and real-world situations. We have already partly addressed this by remodeling 
the problem into a simple brightest-point search, which greatly reduces the training 
requirements. Furthermore, we may harness simulation approaches like Monte Carlo 
simulation [9] which can be used to generate synthetic data to strongly aid the training process 
of the model. 
 
 
Supplementary Note 5: Statistical analysis, validation and comparison of the 
measurement precision/systematic sensitivity 

 
In this section, we examine the numerical performance of the proposed UFPG method and the 
established method of the point Stokes polarimeter (PSP). In particular, we compare their 
performance based on mean square error (MSE) and mean absolute error (MAE) [32–34]. We 
denote (𝑌𝑌1, ..., 𝑌𝑌𝑛𝑛) as the vector of n observed ground truth samples, with (𝑌𝑌�1, ..., 𝑌𝑌�𝑛𝑛) being the 
predicted values. MSE and MAE are computed as, 
 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑛𝑛
�𝑒𝑒𝑖𝑖2,
𝑛𝑛

𝑖𝑖=1

  𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑒𝑒𝑖𝑖|,
𝑛𝑛

𝑖𝑖=1

 
 

(S5) 

 
where 𝑒𝑒𝑖𝑖 = 𝑌𝑌�𝑖𝑖 − 𝑌𝑌𝑖𝑖 . We first conduct an induction process via measuring a standard light field 
that compares to the ground truth. In terms of robustness, error plots for both methods 
comparing to the ground truth are demonstrated in Supplementary Figure 5 and Table 1, where 
a conditional mean (CM) for each point with the conditional confidence interval (CCI) related 
parameters are included. The definition for 90%-CI (P) throughout this work follows 
𝑃𝑃�𝑌𝑌 ∈ �𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋),𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑋𝑋)�|𝑋𝑋 = 𝑥𝑥� = 90% . Throughout this work, we used 𝑃𝑃  to 
characterize the system sensitivity of the UFPG polarimeter, as it reflects the robustness of the 
data variation compared with the ground truth. The CM is estimated via least squares 
regression, as shown in Eq. (5-2), and CCI is estimated via quantile regression [35], as shown 
in Eq. (5-3). 
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𝐹𝐹

1
2
��𝑌𝑌𝑖𝑖 − 𝐹𝐹(𝑋𝑋𝑖𝑖)�
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where 𝜌𝜌𝜏𝜏(𝜇𝜇) = 𝜇𝜇(𝜏𝜏 −ℋ(𝜇𝜇 < 0)); ℋ(∙) is an indicator function, 𝜏𝜏= (0.05, 0.95) corresponds 
to (5%, 95%) in quantile. 𝐹𝐹  in both Eq. (5-2) and Eq. (5-3) is formulated via a Gradient 
Boosting algorithm [36], which is also a ML method for regression and classification, presented 
as 

 
𝐹𝐹(𝑋𝑋) = �𝛾𝛾𝑗𝑗𝑗𝑗ℋ(𝑥𝑥 ∈ 𝑅𝑅𝑗𝑗𝑗𝑗)

𝐽𝐽𝑚𝑚

𝑗𝑗=1
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where 𝐽𝐽𝑚𝑚 is the number of its leaves, 𝛾𝛾𝑗𝑗𝑗𝑗 is the value predicted in region 𝑅𝑅𝑗𝑗𝑗𝑗. Here the tuning 
parameters are set as follows: number of trees = 2, and max depth = 2 for estimating the CM 
for the validation case. The numerical results are summarized in Supplementary Table 1, where 
the upper, middle, lower lines are the 95% quantile, the CM, and the 5% quantile. As suggested 
by the results in Supplementary Figure 5 and Supplementary Table 1, the biases for the UFPG 
polarimeter are much smaller, and the minimal and maximal width of 90%-CI are both much 
narrower than that from the PSP in different cases, hence the UFPG polarimeter shows better 
sensitivity. The corresponding quantitative results also indicate that the UFPG polarimeter 
consistently provides more robust and precise measurement.   

 
The sensitivity is vital for applications where weak polarisation variations play important roles. 
This includes, for example, optical super-resolution microscopes, where polarisation 
aberrations would detrimentally affect the system resolution or measurements of weak vector 
information [4,5,7]; as the quality of a vectorially structured light beam is destroyed. In order 
to compensate for such errors, having a highly sensitive sensor is crucial, since the higher the 
sensitivity, the more precisely the compensation system can then conduct the correction [4,5,7]. 
Here, we demonstrate the sensitivity of the UFPG polarimeter (see Supplementary Figure 5) by 
1) measuring a standard horizontal polarised light field from the light source (generated via a 
polariser, Supplementary Figure 5b), which we use as a standard sensitivity evaluation process 
throughout this work; 2) testing the output of the horizontal middle line of a slightly tilted 
spatially variant half-wave plate array (see Supplementary Figure 5c); which we use as a real 
weak polarisation errors case in this work. Such an array can be used, for example, to generate 
the vectorial light field for the depletion beam of a STED microscope system, where a fine 
polarisation error could be catastrophic [37]. Both results are given with comparisons to the 
results from a PSP. 

 
For the demonstration, we sampled 200 points along the y axis of the target shown in 
Supplementary Figure 5b and 5c (white dotted boxes) by using our UFPG polarimeter and the 
PSP. Then we calculated the bias of second component of the output Stokes vectors recorded 
using two approaches and plotted them in Supplementary Figure 5b (first validation case) and 
Supplementary Figure 5c (second real sensing case). It can be found that the performance of 
the UFPG polarimeter (pink data) showed higher consistency and higher stability than the 
traditional polarimeter (blue data) with respect to the reference line (grey). For second case, a 
time average to reduce uncertainty in the traditional approach is given, producing the grey curve 
as a reference. The measurements are all from small regions (enclosed in the white dotted boxes 
in Supplementary Figure 5). The MSE, MAE as well as sensitivity are calculated for former 
case (here we focus on relative error characterisation); further results can be found in 
Supplementary Table 1. We can see that the UFPG polarimeter shows sensitivity ranging from 
a minimum 0.79 (/102) to a maximum 0.81 (/102), validating that the UFPG method provides 
robust performance. The results also show successful sensing of the trends of the weak 
polarisation errors which cannot be detected via a traditional PSP. We used here 384×384 
pixels; the performance of the UFPG with different numbers of pixels can be found in 
Supplementary Table 3, which validates the trend in Supplementary Figure 4d, given the fact 



that the pixel number affects the sensitivity of the system. A detailed analysis of the effects of 
various parameters on sensitivity for higher pixel numbers would be required to determine the 
ultimate limits of performance.  Furthermore, Supplementary Table 2 gives a quantitative 
comparison of the measurement precision between the UFPG polarimeter and the PSP as well 
as other polarimetry counterparts (see more details in Ref [38]). The UFPG polarimeter shows 
superior performance. 
 

 
Fig. S5. Performance of UFPG and PSP. (a) A test region of the horizontal linear SOP light field 
generated by a high precision polariser. Theoretical results together with experiment results 
using UFPG and PSP methods are given. In the plots of the data in the sub-figures, the horizontal 
axis represents 200 points measured along the zero degree linear polarised light field (the 
direction within the white-dotted rectangle is shown by the “sample direction” arrow); the 
vertical axis shows the percentage of the vertical polarised components, which represents the 
error. (b) A conceptual flow chart of the mechanism of UFPG sensing paradigm. The paradigm 
consists of two core parts: a UFPG system, and an imaging processing method (a ML technique 
in this case) to determine the locations of the brightest points and thereby determination of the 
unknown SOP. Any small input Stokes vector change can lead to the movement of the brightest 
point location. Note here we focus on the relative SOP changes rather than measuring the 



absolute value of the SOP. (c) Schematic of the spatially variant half wave plate array. When a 
vertically linear SOP is normally incident upon a plate with fixed fast axis orientations shown in 
the figure, the output should be a horizontally linear SOP. The output vector field is given. (d) 
Plate with a fine tilt (δ=3°) angle. We measured the Stokes vector output in the white dotted box 
region along the x axis, via the UFPG method and the traditional single-shot point Stokes 
polarimeter. The output vector field is demonstrated as well. (e) The obtained horizontal linear 
component of 200 measured points using both approaches. Pink and blue dots represent the 
measurement points using the UFPG polarimeter and the point Stokes polarimeter. The grey line 
is a reference line. The additional variations are attributed to manufacturing imperfections. More 
details of their initial comparisons and related analysis are provided above. A visualized 
ellipticity change (pseudo-magnitude) is provided as illustration of the effect of the error in the 
horizontal component. 

 
  



 

Table. S1, S2 and S3. *Degrees of polarisation (DOP) error is what the product claimed; ΔRefer 
to Ref [38] for data of other comparisons. 

 

  



 
 
Supplementary Note 6: Low intensity and depolarised scenarios. 
 
To demonstrate the wider feasibility of the polarimeter, we consider measurement using our 
UFPG polarimeter in low intensity and depolarised scenarios, as these commonly occur in real 
world sensing. Supplementary Figure 6a shows retrieval errors from 200 random SOPs 
(methods in the main article) with respect to different normalized intensity levels. 
Supplementary Figure 6b shows the errors of different SOPs associated with different DOPs 
(the DOP level here is normalized and controlled following the method explained in Ref [39]). 
The S1, S2, S3 errors are represented via mean errors and standard deviation. Based on the results 
from Supplementary Figure 6, we can conclude that the UFPG polarimeter has robust 
performance both at low intensity and with depolarisation, which are comparable to its 
performance with normalized intensity level and DOP both equal to 1 (main article). This robust 
performance is a consequence of the ML based imaging processing procedure. The CNN model 
provides many parameters to fit to a wide range of real scenarios. This is helped by the data 
augmentation [40] that included models of the various scenarios for brightness changes 
(including low intensity) and different contrast (related to low DOP) (see Supplementary Note 
4).  
  



 
Fig. S6. Experimental results for low intensity and depolarised occasions. (a) The errors of 
Stokes components S1, S2, S3 with respect to different intensity conditions: 0.51, 0.62, 0.71, 0.80 
(normalized intensity). (b) The errors of Stokes components S1, S2, S3 with respect to different 
DOP conditions: 0.47, 0.64, 0.83, 0.91 (normalized DOP). 

 

The depolarisation parameter is also an important vectorial parameter in numerous techniques 
and applications [41,42] and can be additionally extracted via the obtained image. 
Supplementary Figure 7 shows the typical intensity distributions of several random SOPs 
selected from the Poincaré sphere under different levels of depolarisation (0% for 7a, 20% for 
7b, 60% for 7c, respectively). The SOP of their polarised parts, however, remain the same. The 
level of contrast within the image directly represents the level of depolarisation of the target 
beam. Its DOP – can be theoretically calculated via the normalised intensity value of the 
brightest and darkest points on the intensity image according to a simple calculation, (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 −
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚)/(𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚), This is another unique feature of the UFPG polarimeter that enables the 
calculation of depolarisation in a simple way.  
 



 
Fig. S7. The relationship between depolarised beams and their corresponding intensity images. 
(a) Before depolarisation – point μ on the surface of the Poincare sphere, with radius r from the 
centre o. Recorded intensity images of the UFPG polarimeter for several randomly chosen SOPs 
on the surface. (b) and (c) After depolarisation – points μ’ and μ’’ in the Poincare sphere with 
radius r’ and r’’ from the centre o (the fully polarised part representing the same SOP as μ). The 
final obtained intensity images under such depolarisation levels with previously chosen incident 
SOPs are also given below. The DOP of the incident beam can be calculated from the contrast 
level of their corresponding intensity images. 

 
 
Supplementary Note 7: Single-shot full Stokes multi-point sensing using the UFPG 
paradigm 
 
While we can implement single-shot sensing through our UFPG-based paradigm, it is also 
possible to expand the concept into multi-point measurement as well as into the imaging 



domain. An 𝑛𝑛 × 𝑛𝑛 UFPG array consisting of 𝑛𝑛 × 𝑛𝑛 UFPGs is designed (see Supplementary 
Figure 8a, 10 × 10 UFPGs are used for demonstration). Next it is integrated into the image 
plane of an imaging polarimeter (see Supplementary Figure 8b) – on the surface of the camera 
sensor combined with a polariser. The assembly can then directly perform multi-point 
polarisation sensing by determining the brightest point on each super-pixel (10 × 10) via the 
same procedure as for point sensing. Future engineering solutions should be developed to 
conquer certain problems if we wanted to perform imaging, such as finding a balance between 
the number of photo-sensors and the image resolution – there is always a trade-off when 
considering the focus plane division technique [9] and this issue can be notable in the case of 
our UFPG. 
 

 
Fig. S8. Extended application for the UFPG system. (a) A typical UFPG array with super-pixel 
number 10 × 10. Note that here one UFPG acts as one pixel. (b) A schematic for a new compact 
snapshot Stokes multi-point sensing/imaging device. It possesses the same advantages as a single 
UFPG, such as direct Stokes vector detection without any additional matrix calculations. PSG: 
polarisation state generator; P: polariser. 
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