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1. DERIVATION OF EQUATION 3 OF THE MAIN TEXT

We begin with equation 1 of the main text:
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This equation expresses the resonance amplitude as a function of frequency ω and momentum
k. In a typical band dispersion diagram, k is the wavevector component parallel to the metasurface
plane. The dependence on k enters through the resonance frequency ω0(k), which is a function of
k. As discussed in the main text, the dispersion band around the Γ point of the Brillouin zone in
photonic resonators is typically parabolic, so the resonance frequency dependence on the parallel
component k can be approximated by a quadratic form:

ω0(k) = ω0 ± αk2 (S2)

Where α represents the curvature of the mode’s band diagram and ω0 is the resonance frequency
at the Γ point (k = 0). A convenient way of quantifying the angular tolerance is to inspect the
behaviour of the resonance amplitude at a fixed frequency as k is changed. Therefore, to quantify
the angular tolerance, we can find the range of values of k for which the amplitude at ω0 varies
within a tolerance range. Thus, defining the tolerance range as the Full Width of Half Maximum
(FWHM) value [1–3], we impose that:

A(ω0, ∆k) =
A(ω0, 0)

2
(S3)

where ∆k is the FWHM angular tolerance of the structure. The physical meaning of ∆k is
illustrated in Fig. S1:

Fig. S1. Illustration of the physical meaning of the angular tolerance ∆k. The angular tolerance
is the range within which the amplitude of the resonance is higher than half of its peak value.



Substituting equation S2 into equation S1, we find:

A(ω, k) =

∣∣∣∣∣∣∣∣
Q−1

R

2i
(

1 − ω

ω0 ± αk2

)
+ Q−1

R + Q−1
NR

∣∣∣∣∣∣∣∣
2

(S4)

where we dropped the approximation sign to clean up the notation. From equation S4 we readily
infer that:
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and

A(ω0, ∆k) =

∣∣∣∣∣∣∣∣
Q−1

R

2i
(

1 − ω0

ω0 ± α(∆k)2

)
+ Q−1

R + Q−1
NR

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1

2QR

(
1 − ω0

ω0±α(∆k)2

)
i + 1 + QR

QNR

∣∣∣∣∣∣
2

=
1

4Q2
R

(
1 − ω0

ω0±α(∆k)2

)2
+

(
1 + QR

QNR

)2

(S6)

Substituting equations S5 and S6 into equation S3, we obtain:
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from which we readily infer that:
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and with the help of equation S5, equation S8 can be recast as:
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then, rearranging equation S9, we obtain:
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Typically, specially for high-Q resonances, we have 2QR
√

A(ω0, 0) >> 1, allowing the following
approximation:
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thus, finally, we obtain:
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which is the equation 3 of the main text.
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2. DERIVATION OF EQUATION 5 OF THE MAIN TEXT

Extending equation 4 of the main text to a square lattice with four structures, as shown in figure
1c of the main text, we obtain:

cmn = amn

[
e−i( 2πm

Λ x1+
2πn

Λ y1) + e−i( 2πm
Λ x2+

2πn
Λ y2) + e−i( 2πm

Λ x3+
2πn

Λ y3) + e−i( 2πm
Λ x4+

2πn
Λ y4)

]
(S13)

where −→r p = xp x̂ + yp ŷ, with p = 1, 2, 3, 4 are the position vectors and amn are the Fourier
components of the un-perturbed nano-hole array (deduced further in the text). For a symmetric
shift, we have −→r 1 = −−→r 3 and −→r 2 = −−→r 4. Consequently, equation S13 reduces to:
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Defining the reference position vectors as:
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and the perturbation vectors as:

−→r 1δ = δx̂ + δŷ
−→r 2δ = −δx̂ + δŷ

−→r 3δ = −−→r 1δ
−→r 4δ = −−→r 2δ

(S16)

we can express the position vector as −→r p = −→r p0 +
−→r pδ, which entails that x1 = y1 = Λ/4 + δ

and x2 = −y2 = −(Λ/4 + δ). With these identities, equation S14 reduces to:
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following that:
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which is equation 5 of the main text. The dependence of the function cos
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on δ

is shown in Fig. S2.
Now, the Fourier components of the unperturbed nano-hole array are given by:
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Where ϵl and ϵh are respectively the dielectric constants of the hole and slab, J1 is the Besssel
function of first order, W is the hole diameter and FF is the fill factor:
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π
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)2
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Thus, the first and second Fourier components of the PNHA are given by equation 5 of the
main text, with amn given by equation S19.
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Fig. S2. The dependence of the function cos
[(

2π
Λ n

) (
Λ
4 + δ

)]
on the perturbation parameter δ.

3. BAND DIAGRAM OF THE METASURFACE WITH ELLIPTICAL META-ATOMS

Here we show that the metasurface with elliptical meta-atoms proposed in [4] shares the proper-
ties of both the perturbed nano hole array (PNHA) metasurface and also the symmetry protected
BIC. When the ellipses are tilted, as shown in Fig. S3a, the new period Λx is twice as large as the
unperturbed period, and can excite a mode with propagation constant βx:

2π

Λx
= βx (S21)

However, when ϕ = 0, the period becomes halved and, clearly, the structure no longer couples
the same mode as before, just like the perturbated metasurface. Thus, the unperturbed structure
(as shown under the label “not tilted” in Fig. S3b) features a bound mode, but this mode is not in
the continuum, and so it is not a BIC.

The perturbed structure, however, does feature a symmetry protected BIC. The BIC nature
of the perturbed structure can be better visualised if the perturbation is such that the period
is doubled, but the symmetry is not broken. This perturbation can be achieved by shifting the
ellipses towards each other, thus creating a new unit cell with period Λx, as shown in Fig. S3c.
The band structure (Fig. S3d) vanishes at the Γ (k = 0) point, which is the signature of a symmetry
protected BIC. The tilting of the ellipses angle (ϕ) breaks the symmetry of the geometry, thus the
modes radiates, with the Q-factor proportional to ϕ, as seen in Fig. S3e.

As such, the metasurface with elliptical meta-atoms is intermediary between BIC and PNHA,
featuring properties of both types of structures. This effect manifest itself on the angular tolerance
of these structures: it is higher than the regular BIC angular tolerance, while being lower than
that of the PHNA, as illustrated in Fig. S4a. It also shows the same property of decreasing α with
increasing Q-factor (Fig. S4b), like the PHNA (Fig. S4c) and in contrast to the NHA (Fig. S4d).
However, the α values for the metasurface with elliptical meta-atoms are not so low as the ones
for the PHNA, which translates to a worse angular tolerance performance. The geometry used
for the metasurface with elliptical meta-atoms is the same as in Fig. S4e, while the geometries
used for both the PHNA and NHA are the same used in Fig. 4 of the main paper.
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Fig. S3. a) Metasurface with elliptical meta-atoms. The cover is assumed to be water (n = 1.33),
the substrate (light brown) to be glass (n = 1.45) and the core (dark grey) has a refractive
index of n = 2.4. The geometrical parameters of the elliptical metasurface are: Λy = 0.82Λx,
t = 0.36Λx, L = 0.56Λx and v = 0.2Λx. b) Electric field distribution of the un-perturbed (not
tilted) and perturbed (tilted) elliptical metasurfaces for the specific case where Λx = 500nm.
When the tilting angle Φ = 0, the period of the structure is halved and the mode’s propagation
constant β1 is equal to 25.12 µm−1, note that this value is equal to 2π/(Λx/2). Thus, whereas
this is a bound mode, it is not in the continuum. If Φ ̸= 0 and/or the distance between the
centre of the ellipsis is perturbed, the mode changes to β2 = 12.56 µm−1, which is precisely
half β1 and equal to 2π/Λx . The band diagram of the elliptical metasurface (c) with Φ = 0 and
perturbed distance s < Λx/2 = 0.32Λx is shown in (d), where, at the Γ point, it exhibits a BIC.
The typical dependence of the mode’s Q-factor of a metasurface with elliptical meta-atoms on
ϕ is also shown (e). Similar to the PHNA, the Q-factor goes to infinity as ϕ approaches zero. In
all structures.

Fig. S4. a) Angular tolerance comparison between the PHNA, BIC and the metasurface with
elliptical meta-atoms. The PHNA, NHA and BIC structures are the same as in the main paper
(figures 3 and 4), while the metasurface with elliptical meta-atoms is the same as in the figure
S3e. The relation between the angular tolerance ∆k, α and Q-factor for the three structures is
shown in b) (Ellipses), c) (PHNA) and d) (BIC/NHA).
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4. MORE EXAMPLES OF DEPENDENCE OF THE Q-FACTOR AND α ON δ

Here we shown the perturbation method applied to periodic structures of different materials
than that of the main text. The first structure consists of a nano-hole array (NHA) carved into a
high dielectric film immersed in air, as depicted in Fig. S5a and S5b, respectively in both their
perturbed (high-n-PNHA) and non-perturbed (high-n-NHA) configurations. The other structure
(Fig. S5c and S5d) consists of nano holes carved into a thin metal film over a hybrid substrate.
The metallic-NHA (Fig. S5d) was designed based on the structure investigated in [5]. Details of
the refractive indexes used in the simulations are given in the legend of Fig. S5.

Fig. S5. Unit cell of the high-n-PNHA, consisting of a set of four nano-holes of diameter W
etched into a thin film of a high dielectric material (dark blue, n = 3.5) with thickness t. b)
nano-hole array (NHA) etched into a thin film of a high dielectric material (dark blue, n = 3.5)
with thickness t. The structures are surrounded by air (white background). c) Unit cell of the
metallic-PHNA, consisting of a set of four nano-holes of diameter W etched into a thin gold
(Au) film of thickness tm over a hybrid substrate composed of a thin dielectric layer (green,
n = 2) of thickness td and a slab of glass (light brown, n = 1.45). d) metallic-NHA etched on
the same film and substrate of c).

The relation between the band’s curvature α, the mode’s Q-factor and its angular tolerance (∆k)
is shown in Fig. S6 for both high-n (Figs. S6a and S6b) and metallic structures (Figs. S6c and S6d).

It is clear that, in agreement with the results shown in the main paper, the perturbed structures
exhibited decreasing α for higher Q-factors (Figs. S6a and S6c), in contrast to the unperturbed
versions (Figs. S6b and S6d), where α increases with the Q-factor. Since both α and the Q-factor
contribute equally to the angular tolerance, the reduction of α for higher Q-factors in the perturbed
structures leads to better angular tolerances.

6



Fig. S6. Angular tolerance (∆k) and band’s curvature (α) of the high-n-PNHA (a), high-n-NHA
(b), metallic-PNHA (c) and metallic-NHA (d). The geometrical parameters of high-n-PHNA
(a) are: t = 0.42Λ,W = 0.28Λ , and δ/Λ varying from 1.33% (highest Q-factor) up to 4.28%
(lowest Q-factor). The period of the high-n-NHA was slightly adjusted to keep the resonance
wavelength fixed, with parameters being, for a starting period Λ0 (highest Q-factor), as follows
(b): Λ = λ0 → 1.107Λ0, t= 0.43λ0, W = 0.19Λ0 → 0.43Λ0 (highest to lowest Q-factor). The
geometrical parameters of the metallic-PHNA (c) are: tm = 0.16Λ,td = 0.09Λ ,W = 0.27Λ ,
and δ/Λ varying from 6.07% (highest Q-factor) up to 8.6% (lowest Q-factor). The geometrical
parameters of metallic-HNA (d) are tm = 0.16Λ,td = 0.09Λ, W = 0.18Λ → 0.33Λ (highest to
lowest Q-factor. The Q-factor of the unperturbed metasurfaces were varied by controlling the
hole’s diameter.

5. BAND CURVATURES OF THE PNHA STRUCTURES

In Fig. S7 we illustrate the impact of the perturbation parameter δ on the mode’s band curvature
α and Q-factor of the PNHA structures (Fig. S7a), with the same materials as the high-n-PNHA of
Fig. S5a, for different δ values (Figs. S7b to S7c), where it can be seen that, as the perturbation
δ decreases, the Q-factor increases, which is evident by the tuning of the mode’s band, and the
band’s curvature also decreases, flattening the band.
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Fig. S7. a) Perturbed nano-hole array (PNHA) and the perturbation parameter δ. The materials
used in the simulation are identical of those used in figure S5b. The geometrical parameters
of high-n-PHNA (a) are: t = 0.42Λ, W = 0.28Λ. The band curvature α is given in normalised
units of α2π/Λc.
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