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Silicon Photonic Architecture for Training Deep Neural Networks with Direct
Feedback Alignment: Supplemental Document

In this supplemental document, we provide the experimental details, describe the direct feedback alignment training
algorithm, and discuss the numerical simulation of our photonic neural network training architecture.

I. EXPERIMENTAL PHOTONIC HARDWARE OPERATION

To demonstrate matrix-vector multiplication operations, we performed two sets of measurements using two similar
circuits which both contain identical 1 × 4 MRR arrays with coupled through and drop ports; the ports in the first
circuit connect to an integrated balanced photodetector (BPD), and the ports in the other circuit connect to grating
couplers for off-chip photodetection. The integrated BPD consists of two germanium doped PIN photodiodes (the
configuration is detailed in Refs. [1, 2]), and off-chip photodetection was performed using a 5 GHz BPD from Thorlabs
(part BDX1BA). The circuits were fabricated on an SOI wafer with a silicon thickness of 220 nm and a buried oxide
thickness of 2 µm. The MRRs in both arrays have radii of 8.000 µm, 8.012 µm, 8.024 µm, and 8.036 µm, with a quality
factor of ∼6000 and bandwidth of 200 pm each. The slight differences in ring radii within the MRR arrays were
implemented to avoid resonance collision, and the spacing between the neighboring MRRs is 92 µm. The input optical
channels were multiplexed into a single fiber using a 1 × 4 PLC fiber splitter in reverse and injected into the input
waveguide bus of the MRR arrays using TE focusing grating couplers. The optical losses in the system include the
round-trip loss that occurs when the light is coupled on and off the chip through a pair of grating couplers, which
is measured to be 15 dB. The insertion loss of each MRR is estimated to be 3 dB, and the combiner introduces an
additional 7.3 dB of insertion loss. To accommodate for this loss, we use an erbium-doped fiber amplifier (EDFA)
with a gain of 20 dB to increase the amplitude of the input optical power. The transmission spectrum of the 1 × 4
MRR array is shown in Fig. 1. Approximately 0.8 mA of heating current is required to increase the optical power in
the through port by 15 dB and decrease the optical power in the drop port by 10 dB, as shown in Fig. 2.

We initially calibrated the 1×4 MRR array to determine the mapping between the applied heating current and the
effective weighting value w of each MRR, defined by Td − Tp as discussed in Sec. 2 in the manuscript. We injected
light from four external cavity laser sources with different wavelengths (1546.558 nm, 1548.675 nm, 1549.595 nm,
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FIG. 1. Transmission in the through and drop ports of the 1× 4 MRR array as a function of optical input frequency. An input
optical power of 7 dBm was used.
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FIG. 2. Transmission in the through and drop ports of the 1 × 4 MRR array while sweeping the current applied to a single
MRR. An input optical power of 7 dBm was used.
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FIG. 3. Snapshots of the photocurrent output from the integrated BPD in the 1 × 4 MRR array while sweeping the current
applied to all four MRRs simultaneously. All input optical powers were set to 7 dBm during the sweep.

and 1551.480 nm) into the weight bank and performed four individual sweeps of the applied heating current to each
MRR. During the sweep of the applied heating current, we measured the output photocurrent from the BPD, which
was proportional to |E0|2(Td − Tp) where E0 is the amplitude of the input optical signal. The resulting modulation
results are shown in Fig. 3. After collecting the mapping between the applied heating current and MRR weight value,
we determined the reflection point of the MRR, which is the value of the applied heating current where equal optical
power propagates into the through and drop ports. Finally, we defined the experimental range of applied heating
current to be centered around the reflection point to allow the encoding of both positive and negative weight values.

Each MRR in the array required an applied voltage of 2 V and consumed 1.5 mW of power during steady-state
operation. The additional average tuning power for each MRR was 0.2 mW. The power required by the photodetectors
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FIG. 4. Demonstration of simultaneous modulation of MRRs in the integrated BPD circuit. The black dashed line shows the
measured photocurrent, scaled between −1 and 1, as a function of the applied current to the first MRR in the 1×4 array while
keeping the other three MRR weights constant (i.e., only varying the applied current to the first MRR). The scaled photocurrent
measurements are shown when sweeping across the applied current to the first MRR while simultaneously varying the applied
current to the second MRR (blue), the second and third MRRs (green), and the second, third, and fourth MRRs (red). Each
data point in the three lines is the mean of eight measurements which have been adjusted (by removing the expected difference
in photocurrent when varying the other MRRs) to approximate the change in photocurrent generated solely by the first MRR
(the standard deviation from the measurements is also shown). Therefore, the difference in the data points at each value of
the applied current to the first MRR can be attributed to thermal crosstalk between adjacent MRRs, as well as optical and
electronic noise in the system.

in the MRR array was negligible as they were unbiased during the experiments. Therefore, for a 1 × 4 MRR array,
the total power consumption by the MRRs was ∼6.8 mW. The total power from all four laser sources was 40 mW,
as each laser was modulated using an optical power centered around 10 dBm. Since weight updating of our device is
currently implemented using thermal tuning and the MRRs can operate at a thermal tuning speed of 170 µs [3], the
estimated energy consumption of our current device is ∼2.0 µJ per MAC operation.

The optical channels were modulated directly by Pure Photonic PPCL500 laser sources (using an embedded elec-
tronic modulation feature on the lasers). The optical power levels between 7 dBm and 11 dBm were mapped to the
expected range between 0 and 1 for the input values. Using the known encoding mappings for the four laser sources
and four MRRs, we then randomly varied both the input values of the lasers and the weight values of the MRRs
over 5000 time steps. At each time step, we measured the photocurrent from the BPD, which was the output of the
on-chip inner product operation. We determined the expected output of each operation using the known encoding
mappings of the laser sources and MRRs. Thermal tuning of our MRRs can operate at kHz speeds [3]; however, the
off-chip source meters and tunable lasers we used (four Keithley 2606B source meters, three custom source meters, and
four Pure Photonic PPCL500 tunable laser) were not optimized for high frequency operation which bottlenecked the
maximum operating speed. During our data collection using the on-chip BPD circuit, the process of updating all four
weight and input values and then measuring the photocurrent took approximately one second. The adjacent MRRs
are separated by 92 µm, and the experimental platform was thermally controlled to maintain a constant temperature
of 23.4◦C. Simultaneous modulation of up to four MRRs is demonstrated in Fig. 4.

II. DIRECT FEEDBACK ALIGNMENT ALGORITHM

In feedforward neural networks, the nodes are clustered in different layers where the signals can only pass from a
preceding layer to a succeeding layer. The behaviour of all nodes in a feedforward neural network is identical: the
input signals from the preceding layer are weighted and summed, and a non-linear activation function is applied to
the sum, which is outputted to all the nodes in the succeeding layer. The forward propagation of the input signal
using trained weights is known as inference. The inference of a neural network with l layers can be described for each
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TABLE I. Machine learning notation used in this manuscript.

Symbol Description

W(k) Weight matrix between layers k and k − 1

b(k) Bias vector between layers k and k − 1

a(k) Sum of the weighted input signals in the layer k
g (·) Activation function of the nodes

h(k) Activation of the nodes in the layer k
x Training input
y Target output
ŷ Output of neural network from training input x
L (ŷ,y) Loss function
θ Network parameters including weights and biases
e Error from gradient of the loss function

layer k (defining h(0) ≡ x) as

a(k) = W(k)h(k−1) + b(k), (1)

h(k) = g
(
a(k)

)
, (2)

where the variables used are defined in Table I.
Feedforward neural networks approximate a function f by defining a mapping ŷ = f(x;θ), and the goal of training

is to find the values of the network parameters θ = {W,b} that reduce the overall error between the actual and target
outputs [4]. The error to be minimized can be expressed as a loss function L (ŷ,y), where y is the target output and
the choice of loss function depends on the specific application of the neural network.

The DFA algorithm first determines the gradient of the loss function in the output layer l, which is the error
propagated to the hidden layers:

e = ∇a(l)L (ŷ,y) = ∇h(l)L (ŷ,y)� g′
(
a(l)
)
, (3)

where � is the Hadamard product (element-wise multiplication operator) and g′(·) is the derivative of the activation
function with respect to a(l) [5]. Using the cross entropy loss function and the softmax activation at the output, the
gradient of the loss function is ŷ − y. The DFA algorithm calculates the gradients for each hidden layer k as

δ(k) = B(k)e� g′
(
a(k)

)
, (4)

where B(k) is a fixed random weight matrix with appropriate dimensions.

Using the gradients calculated in Eqs. (3) and (4) and defining δ(l) ≡ e, the update functions of the network
parameters θ for each layer k are

∇b(k)L (ŷ,y) = δ(k), (5)

∇W(k)L (ŷ,y) = δ(k)(h(k−1))T . (6)

The stochastic gradient descent optimization algorithm can be implemented to improve training performance. A
minibatch of examples {x1, . . . ,xm} of size m from the training set are used to compute the update functions found
in Eqs. (5) and (6). The update value for each parameter is then averaged from the minibatch calculations and the
network parameters are updated by following the estimated gradient downhill:

θ ← θ − α

m

m∑
i=1

∇θL (ŷi,yi) , (7)

where α is the learning rate.

III. PYTHON SIMULATION OF THE PHOTONIC DFA ARCHITECTURE

We simulated the training of neural networks with our 1× 4 MRR arrays in Python using the PyTorch framework.
The Python simulation adds correctly-scaled Gaussian noise N

(
µ, σ2

)
, with mean µ and variance σ2, to the matrix-
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vector multiplication operations when calculating the gradient during the backward pass to emulate the experimental
results:

δ(k) =
(
B(k)e +N

(
µ, σ2

))
� g′

(
a(k)

)
. (8)

Since our 1 × 4 MRR array performs 4 MAC operations at each time step, we can simulate the inner product
operation between two vectors of size N by splitting the vectors into N/4 sub-vectors of size 4 (if N is not divisible
by 4, then there will be an additional sub-vector with size N mod 4). We then perform the inner product between all
sub-vectors, which takes N/4 time steps, and finally sum the N/4 outputs to produce the full inner product result.

To accurately inject Gaussian noise into the output of an inner product operation composed of vectors larger
than 4, we scale the standard deviation and mean of the applied Gaussian noise according to the properties of
normally distributed random variables: assuming each MAC operation has a normally distributed error with standard
deviation σ and mean µ, the inner product operation between two vectors of length N will have a normally distributed
error with standard deviation

√
Nσ and mean Nµ.

We trained a neural network of size 784 × 800 × 800 × 10 (two hidden layers), and thus the error vector e had a

length of 10 (since the MNIST dataset has ten classes). The gradient δ(k) for each hidden layer k is calculated by
performing matrix-vector multiplications between the B(k) matrix (800×10) and error vector e (10×1). Therefore,
the calculation of each gradient vector requires 800 inner product operations between the error vector e and each row

in the B(k) matrix. To avoid overfitting our model, the gradient vector δ(k) was regularized by 1/
√
M where M is

the size of the hidden layer k.
To simulate inner product operations between vectors of size N=10, we injected Gaussian noise modeled using the

standard deviation and mean from the experimental 1×4 MRR array measurements scaled between -4 and 4 (i.e., the
expected output range of the multiplications). The error from the measurements using the integrated BPD circuit
has a standard deviation of σ4 = 0.202 × 4 = 0.808 and mean of µ4 = 0.003 × 4 = 0.012. Therefore, for N = 10,
the Gaussian noise added to each element in the matrix-vector output of size 800 × 10 has a standard deviation
σ10 =

√
10/4× 0.808 = 1.277 and mean µ10 = 0.012× 10/4 = 0.030. Similarly, the noise added in the simulation of

the off-chip BPD circuit has a standard deviation σ10 = 0.618 and mean µ10 = 0.030.
We trained the neural networks on the MNIST dataset, which is a collection of 70,000 grey-scale images of hand-

written digits from zero to nine, each of size 28× 28. During training, we split the MNIST dataset into a training set
(60,000 examples), a validation set (5,000 examples), and a test set (5,000 examples). Each network was trained over
50 epochs, and the network performance was evaluated using the validation set after each epoch, as shown in Fig. 5(b)
in the manuscript. The network parameters with the highest accuracy on the validation set were then evaluated on
the test set to report the model’s unbiased performance. The test accuracy as a function of the effective resolution in
bits, defined by log2(2/σ) where σ is the standard deviation of the error in each MAC operation, is shown in Fig. 5(c)
in the manuscript.
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