
Supplemental Document

Anomalous π modes by Floquet engineering in
optical lattices with long-range coupling:
supplement
SHENGJIE WU,1 WANGE SONG,1,2 ZHIYUAN LIN,1 CHEN CHEN,1

SHINING ZHU,1 AND TAO LI1,3,

1National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and
Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and
Applied Sciences, Nanjing University, Nanjing, 210093, China
2songwange@nju.edu.cn
3taoli@nju.edu.cn

This supplement published with Optica Publishing Group on 23 November 2022 by The Authors
under the terms of the Creative Commons Attribution 4.0 License in the format provided by the
authors and unedited. Further distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.21511953

Parent Article DOI: https://doi.org/10.1364/OE.476899



Anomalous π Modes by Floquet Engineering 
in Optical Lattices with Long-range Coupling: 
Supplemental-document

Section I. Zero modes in static case with long-range coupling.
Section II. Experimental proposals.
Section III. Floquet replica analysis.
Section IV. Topological invariant with long-range coupling.
Section V. Floquet topological phases with complex long-range coupling.



Section I. Zero modes in static case with long-range coupling.
As shown in Fig. 1 in the main text, the long-range coupling result in two pairs of degenerate 
points (DPs). If the 3rd nearest-neighbor (NN) couplings are dimerized, both DPs could open 
a nontrivial gap, as shown in Fig. S1(a) (red for gap1 and blue for gap2). It implies more zero 
modes compared to the traditional Su-Schrieffer-Heeger (SSH) case with bandgap opening only 
at the boundaries of the momentum space (i.e., gap1). Figure S1(b) shows the mode diagram 
under open boundary condition (OBC) with N=40. It is found that four zero modes emerge 
inside the bandgap. The two edge modes marked by red dots correspond to the original zero 
modes, which feature π phase shifts for the first and the third edge sites [Fig. S1(c)]. While the 
other two with blue dots are new zero modes with different features induced by the long-range 
coupling [Fig. S1(d)]. To be mentioned, the topological phases and associated zero modes in 
static SSH model with long-range coupling have been theoretically analyzed [1,2], which 
demonstrate richer zero modes characterized by winding number W=-1, 1, and 2. 

FIG. S1. (a) Band structure of the static model under PBC with c32/c31= 2, c31=c10. (b) 
Corresponding mode diagram under OBC with 80 sites. (c) and (d) Normalized field of 
topological zero modes within the bandgap corresponding to (b). (c) is the traditional zero modes 
while (d) is long-range coupling induced zero edge states. 

Section II. Experimental proposals. 
Here, we would like to propose a possible experimental realization of the Floquet waveguide 
lattice with long-range coupling. The 3rd NN couplings of our model [with c32(z) ≡0] can be 
rearranged into a ladder waveguide lattice shown in Fig. S2. The waveguides are periodically 
bent in the x-z plane along their propagating direction z with period P modulating the driven 
frequency. The average coupling amplitudes c10 and c30 are controlled by distances d1, d2, d3, 
and δc1(δc3) is introduced by the bending amplitude A. Such waveguide lattice can be fabricated 
by the femtosecond-laser direct-writing technique [3-5].



FIG. S2. Possible realization in the ladder waveguide lattice.

Section III. Floquet replica analysis.
We rewrite the Hamiltonian [Eq. (1) in the main text] as a sum of z-independent and z-periodic 
parts:
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Here, c10 and c30 in Eq. (S2) are the initial NN and 3rd NN coupling without bending, 
respectively, δc1 and δc3 denote the amplitudes of modulation and ω (ω ≡ 2π/P, P is the period) 
is the modulation frequency. φ is the initial phase determined by the starting distance z = 0. 
Floquet theory [6] can be applied to analyze this z-periodic Hamiltonian H(z+P)=H(z) with a 

period P. The solution of the equation  ( ) ( )i z H z z
z
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
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superposition of Floquet states:
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where εα is the quasienergy and |uα(z)> is the associated Floquet mode. The Floquet modes are 
P-periodic functions and belong to extended Hilbert space, which is a direct product of the 
usual Hilbert space and the space of z-periodic functions with period P. Substituting the Floquet 
ansatz [Eq. (S4)] into equation, we arrive at the eigenvalue equation:
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Based on the periodic property, the Hamiltonian and Floquet modes can be spectrally 
decomposed as
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where non-zero components H0 and H±1 are
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under the periodic boundary condition. Here k is the Bloch wavevector and σx,y correspond to 
Pauli matrices. The z-independent Floquet equation can be obtained by substituting these 
expansions into Eq. (S5):
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The Floquet band structure can be obtained by solving the above equation and truncating at 
a large n (as shown in Fig. 3 in the main text). The calculated band structure with long-range 
coupling clearly shows the closing and reopening of π gaps, indicating the topological phase 
transition and the emergence of the π modes.

Section IV. Topological invariant with long-range coupling.
In a Floquet system, the topological feature of π gap originates from the interaction of different 
Floquet replica bands, which is indicated by the topological invariant Gπ in a chiral symmetric 
system [i.e. σzH(z, k)σz = -H(-z, k)] [7]. In our case, Gπ can be calculated by the time evolution 
operator U(z) and z-averaged effective Hamiltonian Heff. By decomposing U(z) and Heff as U(z) 
= ∏ U(z, k) and Heff = ∑k Heff(k), Gπ writes [7]
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where Vπ
+ can be obtained from V(z, k) at half period:
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According to the bulk-edge correspondence in the Floquet system, Gπ indicates the number 
of topological modes inside the corresponding π gap. In contrast to previous works which only 
consider the nearest-neighbor coupling, our work shows that long-range coupling can also 
effectively modulate the band structure. The interaction of replica bands and the topological 



features become more complex and fruitful with the presence of long-range coupling, which 
give rise to a larger value of Gπ and indicate the emergence of new π modes.

Section V. Floquet topological phases with complex long-range coupling.
In the main text, we only consider the long-range coupling c31(z) and set c32(z)≡0 in the 
calculation to simplify the model. However, for more general cases with non-zero c32(z), FTP 
with Gπ>2 and more π modes can be expected. The calculated topological invariant Gπ with 
c32(z)≠0 is shown in Fig. S3, and there are four topological regions indicated by different Gπ.

FIG. S3. Calculated Gπ and phase diagram of π mode as a function of 𝜔/4c10 and c30/c10 with 
c32≠0. Green lines indicate the boundary of different topological phases. Gπ =3 in the region III 
while it shows non-integer value in region Ⅳ.

Gπ is equal to zero in region Ⅰ and one in region Ⅱ, which are similar to the case of c32(z)=0 
shown in the main text. However, Gπ jumps to three in region Ⅲ, indicating a quite novel 
topological phase induced by replica band interaction with c32(z)≠0, which has no counterpart 
in the case of c32(z)=0. Further increasing the long-range coupling strength leads to complex 
replica band interactions and results in non-integer value of Gπ, similar to the case of low-
frequency region mentioned in Refs. [8,9]. 
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