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1. The details about Pearson correlation coefficient (PCC) metrics.

Pearson correlation coefficient is used to measure the correlation (linear correlation) between 
two variables X and Y, and its value is between -1 and 1, as shown in Eq. (3). Both are used to 
evaluate the prediction performance of models.  
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Where n  represents the sum of the test set, iY


 denotes the predicted spectrum, iY  is the 

ground-truth. The Y


 and Y  are the average spectrum of the predicted spectrums and the 

ground-truth spectrums, respectively.

2. Normalization of the network input

The structure and training details of DNN and SEmNet are the same. We also normalized 
each class parameter in every batch according to Eq. (4). The other settings remain the same as 
before for improving the prediction accuracy. Experiment results demonstrate that the 
prediction accuracy is higher without normalization, as in Table 1. Therefore, we set the 
network input as the initial structural parameters without normalization.
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Table 1. Average MSE loss on the test set with or without input normalization

Methods DNN
Reduce 

Sampling points
Binary inputs SEmNet

MSE with 
normalization

0.0038 0.0035 0.0018 0.0016

MSE without 
normalization

0.0025 0.0024 0.0014 0.0012

3. The effect of various encoding length on model prediction performance 

and verification of the learnable matrix K.

In order to explore the effect of different encoding lengths on the prediction performance of 
the model, we conducted experiments with various encoding lengths of 1350, 1400, 1450, 1550, 
and 1600 in sequence. Table 2 shows the MAE, MSE, and PCC metrics on the test set. The 
performance metrics did not change much with different encoding lengths.

Table. 2. The MAE, MSE, and PCC metrics on the test set with various encoding lengths
Loss 1350 1400 1450 1500 1550 1600
MAE 0.0126 0.0126 0.0124 0.0122 0.0125 0.0124
MSE 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012
PCC 0.9005 0.9007 0.9008 0.9028 0.9028 0.9030

Table. 3. The MAE, MSE, and PCC metrics on test set when input is one-hot vector.
Loss MAE MSE PCC

One-hot vector as 
input

0.0179 0.0015 0.8661

Binary input 0.0178 0.0014 0.8747
SEmNet 0.0122 0.0012 0.9028

To validate the effectiveness of the learnable matrix K, we directly input the one-hot vector 
to the neural network. Table 3 demonstrates that the performance without matrix K is almost 
the same as that of the binary input method, which proves that the learnable matrix K is valid. 
The sparsity of one-hot vector will affect the prediction accuracy of the network. Regarding the 
one-hot vector directly as the input does not transfer this method to other works. When the 
parameter range is large or more parameters exist, the one-hot vector dimension will be very 
high, which may cause a dimension disaster.



4. Finding Optimal Size of the Learnable Matrix K

The encoding module increases the dimensionality of the structural parameters while the 
embedding module decreases it using a learnable matrix, which exploits an implicit relationship 
among the structural parameters. The output of the structure-embedding module contains 
detailed information and good for the prediction of DNN module. To optimize the size of K, 
we conducted multiple experiments with the value of d ranging from 16 to 60 in a step of 2 and 
kept other training details unchanged. An initial value of K is determined by the size of MDEG. 
Fig. 1 shows average mean-square errors of d on the test set. The optimal d value was 50. A 
suitable mismatch between input and output dimensionality of a neural network can improve 
the prediction accuracy. 

Fig. 1. Average MSE loss on the test set with the value of d ranging from 16 to 60 in steps of 2.

5. The hypothesis testing about the SEmNet and the binary input method

To illustrate the difference between Binary input method and SEmNet statistically, we 
perform the dataset random splitting and the corresponding training and testing separately for 
three times. These three experiments, as shown in Table 4-6, are denoted as realization_1, 
realization_2, and realization_3, which are used for hypothesis testing between the SEmNet and 
the binary input method.

Table 4. The average MSE loss on test set in three experiments
Methods realization_1 realization_2 realization_3 Mean Std(×10-5)

Binary Input 0.00141 0.00135 0.00136 0.00137 3.24
SEmNet 0.00117 0.00118 0.00119 0.00118 1

Table 5. The average MAE loss on test set in three experiments
Methods realization_1 realization_2 realization_3 Mean Std(×10-4)

Binary Input 0.0175 0.0181 0.0178 0.00178 3
SEmNet 0.0122 0.0123 0.0125 0.00123 1.58



Table 6. The average PCC metric on test set in three experiments
Methods realization_1 realization_2 realization_3 Mean Std(×10-3)

Binary Input 0.8727 0.8724 0.8791 0.8747 3.1
SEmNet 0.9040 0.9037 0.9007 0.9028 1.5

Fig. 2. The results of SEmNet and Binary input method. The green line represents the result of SEmNet 
and the purple line denotes the result of the Binary input method.

Fig. 2 shows the prediction performances of SEmNet and Binary input method in narrowband 
transmission spectrum and oscillation response. From the enlarged portion of the spectrum at 
the resonant frequency in Fig. 2(a), the prediction effect of the SEmNet at the peak is better 
than the binary input method. The dimension of embedding vector is adjusted by setting the 
hyperparameter d value, which alleviates the huge dimensionality mismatch of the neural 
network. This operation improves the prediction accuracy at the resonance, which is not 
achieved by binary input method. Fig. 2(b) also shows that the SEmNet is more accurate than 
the binary input method in predicting the complex response, such as oscillation response. The 
structure-embedding module exploits the relationship among structural parameters, which may 
not be available in the hard-coding method. 

The t-test is mainly used for a normal distribution with a small sample size and an unknown 
population standard deviation. We assume that the metrics of the SEmNet and the binary input 
method obey the normal distribution. When the population variances are unknown and the two 
sample variances satisfy the following condition, as shown in Eq. (5), Independent two-sample 
t-test [1] is suitable for testing whether the means of two independent normal samples or similar 
normal samples are equal.
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Where 2
1s  and 2

2s  represent the variances of two groups of samples. Let us define:

Null hypothesis H0: The metrics on test set of the SEmNet and the binary input method are 
equal. 
Alternative hypothesis H1: The metrics on test set of the SEmNet and the binary input method 



are unequal.
Use the Satterthwaite approximation[2] to construct statistics t:
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The degree of freedom is given as Eq. (7):
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Where 1 2X X，  are the mean of two groups of samples, 1 2,  n n  are the size of two groups of 

samples, 1 2,  vv  are the degrees of freedom of two groups of samples. The significant level   

is set to 0.05. Then, 
,

2
v

t  represents the t-distribution value with a quantile of 
2
  and v  

degrees of freedom. The 
,

2
v

t  is obtained by inquiring the t-distribution table.

Table 7. The value of each variable in the hypothesis testing

Metric v t ,
2

v
t

MSE 2 -12.18 4.3027
MAE 3 -34.45 3.1824
PCC 3 14.17 3.1824

It can be obtained that 
,

2
v

t t  from the table 7. Therefore, the H0 is rejected. The 

performance on test set of the SEmNet and binary input is unequal. Generally, Hypothesis 
testing needs a large number of samples as support, which requires sufficient realizations of the 
training and testing experiments. A single realization takes 13 hours and we can not provide a 
lot of samples for hypothesis testing. From the table 4-7 and Fig 2, however, we have reason to 
believe the SEmNet outperforms the binary input method statistically.
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