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1. TRAINING AND EVALUATION OF HIFIHC

The dynamic focal stack loss is defined as
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where | · | is the element-wise absolute value operator, t denotes the training iteration, DRand
t is

a set of random offsets from the hologram plane to the locations in the volume of 3D content
that varies per training iteration, ASM denotes the angular spectrum method for free-space
propagation,
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where µ ∈ RRx×Ry and υ ∈ RRx×Ry are the spatial frequencies along the x and y directions, ∇ is
the gradient operator, ⊙ denotes Hadamard element-wise product, F and F−1 are the 2D Fourier
transform and inverse Fourier transform operator.

We train image and video versions of HiFiHC with wr = 23 when the bpp is greater than
the target bpp, wr = 2−5 when the bpp is less than the target bpp, wholo = 19.125 × 2−5,
w f s = 19.125 × 2−5, wD = 0.015. For both versions, DRand

t consists of 15 random depths.
Following HiFIC, We use a learning of 10−4 for the first half million iterations and decay it to
10−5 for the second half million iterations.

At evaluation, we use mv-extractor [1] (https://github.com/LukasBommes/mv-extractor) to
extract the motion vector (see Fig. S1 for a visualization). Because mv-extractor is only designed for
the H.264 codec, we encode a separate H.264 video along with the H.265 video only for extracting
the motion vectors. We defer motion vector extraction of H.265 video to future engineering as this
does not affect the method performance. We optionally adopt the translated macroblock during
motion compensation of the residual image if the compensated region yields a smaller mean
square error (MSE) than the MSE before compensation. This error check is necessary because the
reverse case could happen when the motion vectors connect two blocks with a close appearance
but do not correspond to the same area across the frames (i.e., most of the macroblocks in Frame
4 of Fig. S1). In such cases, the translated residual rarely reduces the MSE error. The acceptance
of the macroblock is recorded by a binary flag and entropy coded as side information.

2. ADDITIONAL RESULTS

We demonstrate additional results (see Fig. S2, S3, and S4) on hologram image and video com-
pression results for various captured and computer-rendered scenes. These results illustrate the
consistently improved performance available with HIFIHC over conventional image and video
compression codecs, particularly with the improved resolution of fine details in the refocus results
(marked by the white box).

3. ADDITIONAL NOTES ON PROPAGATION DISTANCE VS. HIFIHC PERFORMANCE

When constructing practical holographic head-mounted displays (HMDs), the 3D image formed
by the hologram locates approximately one focal length behind the eyepiece, whereas the SLM
is typically placed closer to reduce the display form factor. This induces a propagation distance
from the hologram on the SLM to the volume of the 3D image, and this distance can vary
based on different design choices and targeted applications of the HMDs. Here, We evaluate



HiFiHC performance at various propagation distances. Specifically, we train HiFiHC models
at 5mm, 10mm, 15mm, and 20mm propagation distances from the hologram to the 3D image.
Figure S5 illustrates the compression performance of HiFiHC versus the conventional codecs. For
both image and video compression, HiFiHC maintains the performance gain across all the tested
propagation distances. In image compression, HiFiHC shows a slower performance drop when
the propagation distance is prolonged. This is because conventional codecs are only optimized for
images with natural statistics, and the hologram statistics differ more from it as the propagation
distance prolongs. In contrast, the independently-trained HiFiHC model is less sensitive to the
hologram statistics changes. For video compression, our hybrid approach of using HiFiHC to
compute residual for a high CRF video has to suffer the performance drop of conventional codec.
However, it still consistently outperforms a lower CRF video by 1dB or more.

4. ADDITIONAL NOTES ON RATE-DISTORTION CURVES

Figure S6 visualizes the rate-distortion(RD) curve for both image and video compression evalu-
ated at the hologram plane and a stack of object planes, for later of which five layers are evenly
sampled through the object space, and the mean PSNR is reported. The image RD curves exhibit
very different statistics from the video RD curves. For the image RD curves, HiFiHC achieves a
∼3dB improvement over BPG and HEIC at the hologram plane and a +4dB improvement at the
object plane. The relative improvement difference at the hologram plane and the object planes is
minor. In contrast, video-version HiFiHC only achieves a ∼0.2dB improvement at the hologram
plane but a +1.4dB improvement at the object plane, resulting in a big relative improvement
difference. This is caused by the fact that, in video compression, the CNN is only responsible for
reconstructing the residual, which contributes little to the overall intensity of the image. However,
the residual often presents the high-frequency information critical to the refocusing power of
the hologram. The focal stack loss encourages the reconstructed residual to preserve the most
essential details for refocusing, leading to a significant performance gap at the object planes that
requires more than a 0.3bpp increase to match. We note that the PSNRs reported for images and
videos are not directly comparable as the test scenes have no overlap, and readers should solely
focus on the performance difference within each task category. The image compression method
may be adopted in extreme cases where directly encoding each frame as an image outperforms
video-based HiFiHC.

5. ADDITIONAL NOTES ON PHASE INITIALIZATION OF GROUND TRUTH CGH

In this work, we train and evaluate our method using smooth-phase ground truth holograms
as a lot of recent studies that demonstrate high-quality display results choose smooth-phase
initialization [2, 3]. As described in our letter, a smooth-phase hologram eliminates the speckle
noise and also facilitates the use of the double phase methods. However, we note that it is still a
debatable topic as sometimes random phase hologram demonstrates advantages over smooth-
phase hologram depending on the system configuration. For example, in direct view systems
without an eye-piece lens, a random phase hologram could better utilize the display’s space-
bandwidth and provide parallax views with a close-to-uniform spectrum. On the other hand,
in a pupil-forming system, a smooth-phase hologram tends to have uneven energy distribution
in the eyebox with a high peak at the center. This would sometimes result in vignetting or
unnatural blur effects, while random phase holograms can facilitate a more natural blur pattern.
Nevertheless, recent studies have demonstrated that temporal multiplexing with smooth-phase
hologram could overcome such issues [4]. Since in near-eye displays, the eye moves around
with the headset; thus, at one moment in time, only one view is technically needed, whereas
the motion-induced view change can be alternatively supported by rendering a new hologram
optimized for the new view. Thus, it might be more important to reduce speckles instead of
supporting view-dependent effects in near-eye display applications. That said, the pros and cons
of both smooth and random initialization methods are still being explored yet, and we leave
the extensive study of the effect of the phase initialization method as future work. We further
stress that our training data are mainly designed to help CNN reproduce consumer graphics
content (e.g., games, movies, natural images), but to make the CNN a general-purpose compresser
contents from such as domain-specific/scientific applications (e.g., holographic microscope or
tomography measurement).
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6. ADDITIONAL NOTES ON DATA PREPROCESSING

Our hologram is initially represented as an amplitude map and a phase map. For natural-image-
like 3D scenes, the resulting amplitude rarely goes beyond 1. In practice, we empirically set
the max as

√
2 as it upper bounds the maximum amplitude found in the dataset holograms,

and if any value beyond exists, it is clipped. The range of phases is bounded by the periodicity
and always clipped into [0, 2π]. The amplitude and phase are converted to real and imaginary
components and fed to the network. For all test holograms, we didn’t see any influence of the
clipping. Again, this assumption is valid for the smooth phase hologram we intended for and
may not hold for arbitrary holograms.

7. ADDITIONAL NOTES ON ALTERNATIVE COMPRESSING STRATEGIES

In light of recent works on efficient hologram computation, an alternative solution for compression
is compressing the hologram’s input and relying on edge devices to directly compute holograms
in real-time. A viable input that can readily leverage existing codecs is the RGB+D input (e.g.,
using 3D-HEVC). However, many works have shown that more complex representations such
as layered depth images (LDI), light fields, or full point clouds are necessary to incorporate
wavefront diffracted by non-line-of-sight parts in the scene [5, 6]. Such information is critical to
producing a natural depth boundary. While which representation is optimal is still in debate,
RGB-D has proved insufficient. Efficient codecs for these more advanced representations are
either under development or haven’t received enough attention yet. Therefore, at this moment in
time, transmitting/decoding one of these new representations and then running a real-time CGH
algorithm may not be more computational/power-efficient than directly decoding the hologram.
Nevertheless, this is another promising path of solution that is worth further investigation.
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macroblock motion vector
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Frame 1
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Frame 2
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Big Buck Bunny
Frame 4
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Frame 6

Fig. S1. Visualization of motion vector extracted by mv-extractor, only ones with non-zero
magnitude are shown. Readers are encouraged to zoom in and checkout for Big Bunny Bunny
Frame 2-4. The rectangle box denotes the macroblock, the processing unit in conventional im-
age and video compression codecs based on linear block transforms (i.e., DCT). The arrow line
denotes the motion vector, where it starts from the center of the macroblock in the reference
frame and ends at the center of the macroblock in the current frame. The Big Buck Bunny scene
represents a type of scene where some content undergoes a non-translation motion, whereas
the rest remains close to stationary. The Orchids represent another type of scene where the
whole scene undergoes a translation motion with perspective projection.
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HiFiHC (0.20 bpp)
36.49 db | 35.49 db
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33.16 db | 31.21 db
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0.913 | 0.913

Uncompressed
(11.8 bpp) 

HiFiHC (0.26 bpp)
36.73 db | 35.47 db

0.971 | 0.969

BPG (0.26 bpp)
31.75 db | 30.61 db

0.909 | 0.910

HEIC (0.26 bpp)
31.38 db | 30.31 db

0.905 | 0.904

Uncompressed
(12.7 bpp) 

refocused depth of field magehologram in-focus content

HiFiHC Amplitude

HiFiHC Phase

HiFiHC Phase

HiFiHC Amplitude

HiFiHC Amplitude HiFiHC Phase HiFiHC Amplitude HiFiHC Phase

Fig. S2. Additional comparison of HiFiHC, HEIC, and BPG performance on hologram images.
Readers are encouraged to zoom in and examine details. The second and the third row in each
label mark the peak signal to noise ratio (PSNR) and structure similarity index (SSIM) for the
hologram amplitude (first number) and the refocused DoF image (second number). Source
images: Couch (top left) from Kim et al. [7], Mr. Elephant by Glenn Melenhorst, Robot (bottom
left), and Home (bottom right) scene from Xiao et al. [8]
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Frame 0
(I, 0.154 bpp)

Frame 1
(P, 0.152 bpp)

Frame 2
(P, 0.154 bpp)

Frame 3
(P, 0.153 bpp)

Frame 4
(P, 0.150 bpp)

Frame 0
(I, 0.184 bpp)

Frame 7
(B, 0.165 bpp)

Frame 14
(P, 0.173 bpp)

Frame 21
(B, 0.161 bpp)

Frame 28
(P, 0.170 bpp)

30.54 dB 28.53 dB 28.88 dB 28.64 dB 28.63 dB

29.28 dB 26.51 dB 27.04 dB26.87 dB 27.23 dB
0.914

0.905 0.890 0.896 0.900 0.901

0.920 0.904 0.909 0.907

34.12 dB 34.12 dB 34.80 dB 34.84 dB 34.50 dB

32.61 dB 32.22 dB 32.76 dB32.92 dB 32.32 dB

0.944

0.923

0.941

0.911

0.948

0.926

0.952

0.929

0.950

0.925

in-focus content

Fig. S3. Additional comparison of HiFiHC and H.265 (at lower CRF) performance on holo-
gram videos. Readers are encouraged to zoom in and examine details. The top and bottom
numbers in each inset mark the PSNR and SSIM for the refocused DoF image. The second row
in the frame label marks the frame type and the bpp of the HiFiHC latent code. Source images:
Orchids (top) from [9], and Market_5 (bottom) from MPI Sintel dataset [10]. The H265 (lower
CRF) results in the use CRF of 18 and 19 for Orchids and Market_5, respectively, both of which
yield a similar amount of additional bpp compared to the HiFiHC.
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Frame 2
(P, 0.164 bpp)

Frame 3
(P, 0.172 bpp)

Frame 4
(P, 0.170 bpp)

Frame 5
(P, 0.174 bpp)

Frame 6
(P, 0.176 bpp)

Frame 18
(P, 0.190 bpp)

Frame 19
(P, 0.192 bpp)

Frame 20
(P, 0.191 bpp)

Frame 21
(P, 0.186 bpp)

Frame 22
(P, 0.189 bpp)
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26.75 dB 26.51 dB 27.04 dB26.87 dB 27.23 dB
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31.26 dB 31.43 dB 31.10 dB31.29 dB 30.96 dB
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Fig. S4. Additional comparison of HiFiHC and H.265 (at lower CRF) performance on holo-
gram videos. Readers are encouraged to zoom in and examine details. Each inset’s top and
bottom numbers mark the PSNR and SSIM for the refocused DoF image. The second row in
the frame label marks the frame type and the bpp of the HiFiHC latent code. Source images:
Market_6 (top) and Cave_4 (bottom) from MPI Sintel dataset [10]. The H265 (lower CRF) re-
sults use CRF of 20 and 20 for Market_6 and Cave_4, respectively, both of which yield a similar
amount of additional bpp compared to the HiFiHC.
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Offset (mm) Offset (mm)

Image compression performance at different hologram offsets Video compression performance at different hologram offsets

Fig. S5. Performance comparison of hologram image compression (left) and video compres-
sion (right) under different offsets between the 3D volume and the hologram. The PSNRs are
calculated for the refocused insets in Fig. 2, Fig. S2 (for image compression); Fig. 3, Fig. S3,
Fig. S4 (for video compression). For both hologram image and video, the PSNR decreases as
the offset increases.

bpp

bpp

bpp

bpp

bpp

Fig. S6. Rate-distortion curves for image and video compression evaluated at the hologram
plane and a stack of object planes. For object planes, five layers are evenly sampled through the
object space and the mean PSNR is reported. The PSNRs are calculated for the scenes in Fig. 2,
Fig. S2 (for image compression); Fig. 3, Fig. S3, Fig. S4, and additional test scenes from Xiao et
al. [8] (for video compression).
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