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1. Details of the temporal spike encoding. 
The spike encoding for each input pattern can be expressed as ( ) ( ) [ ]= 5et m I m x y ns× + + , in which x and y are the subscript index of 

elements in pixel matrix, respectively. I(m) represents the m-th column pixel intensity encoded by the PRE-m neuron, and the value is 0 or 1 
corresponding to the pixel of white or black. For example, for input pattern “2”, pixel intensity of each columns are I(1)=[1,0,1,1,1], 
I(2)=[1,0,1,0,1], I(3)=[1,0,1,0,1] and I(4)=[1,1,1,0,1], respectively. And the corresponding encoded spiking timings are te(1)=[7, 9, 10, 11] ns, 
te(2)=[8, 10, 12] ns, te(3)=[9, 11, 13] ns, te(4)=[10, 11, 12, 14] ns. 

 
 
2. Details of the model for the photonic spiking neuron. 
 
In the simulation model, the spontaneous emission coupling factor 41 10β −= × , output power coupling coefficient 0.4cη =
, bimolecular recombination term 6 3 -110 10 m srB −= × , photon lifetime 4.8psphτ = . The other parameter definitions and 
values for the model are presented in Table S1. The subscripts a  and s  stand for the gain and absorber regions, 
respectively. With these parameters, the rate equations are numerically solved by using the fourth-order Runge-Kutta 
method. 

Table S1. The parameters used in the simulation [1-2]. 

Parameter Gain region Absorber region 

Cavity volume 182.4 10 maV −= ×  18 32.4 10 msV −= ×  

Confinement factor 0.06aΓ =  0.05sΓ =   

Carrier lifetime 1nsaτ =  100pssτ =  

Differential gain/loss 122.9 10 mag −= ×  1214.5 10 msg −= ×   

Transparency carrier 
density 

24
0 1.1 10 man = ×  24 -

0 0.89 10 msn = ×   

Bias current 2mAaI =  0mAsI =   

 
 

3. Refractory period of FP-SA under different conditions. 
We performed extensive experimental measurements of the refractory period. Ten input pulse pairs with different inter-

spike interval (ISI) were designed, and a single input pulse is added as a reference pulse to ensure that each single stimulus 
pulse exceeds the excitable threshold. Here, the ISI includes 0.1ns, 0.2ns, 0.3ns, 0.4ns, 0.5ns, 0.6ns, 0.7ns, 0.8ns, 0.9ns and 
1ns, as shown in Fig. S1 (a1). The response shown in (a2) indicates that, the first 5 pulse pairs each only triggers a single 
response spike. For the rest cases of ISI, two spikes could be triggered for each pulse pair. That is to say, when ISI is 
relatively small, the FP-SA cannot emit a spike in a short time after it just responded a spike to the preceding stimulus 
pulse, as the carrier in the gain region is not fully recovered. But when the ISI is sufficiently large, due to the recovery process 
of carrier, the gain section takes enough time to fully recover its gain, and the second stimulus pulse can also trigger a spike. Thus, the 
refractory period in Fig.S1 (a2) is between 0.5ns and 0.6ns. For simplicity, we consider here the refractory period is 0.5ns. 
  In fact, the refractory period is related with the carrier recovery time. Under different operation conditions, such as gain current, reverse 
voltage and injection power, which all can affect the carrier number in the gain region, the carrier recovery time is different, leading to 
different refractory period. We further presented in Figs. S1 (b1-b2) and (c1-c2) under different operation conditions. It can be seen that the 
refractory period is slightly different, which is about 0.4ns in (b2) and is 0.3ns in (c2). 
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Fig.S1. The refractory period of the FP-SA. (a1, b1, c1) correspond to input stimuli and (a2, b2, c2) correspond to 
response of the FP-SA. (a1-a2) with Pinj=63.27 μW , SAV =-2.0092V.（b1-b2）Pinj =63.9 μW , SAV =-0.66V (c1-c2) Pinj 

= 68.4 μW , SAV =0V . The rest parameters are the same for three cases, with GI =52.0mA, _FP SA peakλ − =1555.510nm, 

injλ =1562.874nm. 

 
4. Inhibitory dynamics of FP-SA. 

To demonstrate the inhibitory dynamics [3-5], we properly adjusted the operation parameters to make the FP-SA operates 

at periodic self-pulsation regime, and then injected modulated external stimulus signal to inhibit the spike generation. The 

result is shown in Fig.S2. It can be seen that, the period pulse train can be inhibited under the high intensity stimulus, due 

to the injection-locking effect [5]. As presented in (c), the temporal maps plotting the response of laser neuron to the arrival 

of 100 consecutive external stimuli indicates that the inhibition of spikes is repeatable. The optical spectra is further 

displayed in (d). Thus, the inhibitory dynamics can also be observed in the fabricated FP-SA.  

 

 
 
Fig.S2. The inhibitory dynamics of FP-SA, (a) represents the stimulus signal , (b) denotes the response of the FP-SA neuron, 
(c) denotes temporal maps plotting the response of laser neuron to the arrival of 100 consecutive external stimuli, (d) 
represents the optical spectra. With GI =52.0mA, SAV =-2.01V, Pinj=197.46 μW , injλ =1560.345nm. 
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5. The effect of injection power and wavelength detuning on the neuron-like dynamics. 
In experiments, it is found that the injection power range that leads to successful neuron-like dynamics is varied with 

the injection wavelength. We performed extensive measurements on the injected power range for different wavelength 
separation. 

It was found that the FP-SA could operate as a photonic spiking neuron when the injection wavelength was set close to 
or slightly larger than one of the longitudinal mode wavelength mλ that is away from the peak wavelength _FP SA peakλ − . 
Through our experimental measurements, the separation between mλ and _FP SA peakλ − that is greater than 2nm is suggested. 
At first, we considered a fixed mλ that is away from the peak wavelength, and varied the injection wavelength of the TL. 
Here, the wavelength detuning = inj mλ λ λ−∆ was varied from 0.01nm to 0.03nm. The measured values of minimum and 
maximum injection power that lead to spiking threshold response are presented in Table S2. It can be seen that, the injection 
power range that leads to controllable spike threshold response varied with the wavelength detuning. In general, the 
minimum injection power required to realize the threshold response is increased with the increase of wavelength detuning. 

Besides, we also consider the case when the external stimulus light is injected at different longitudinal modes. For each 
longitudinal mode wavelength mλ , we keep the wavelength detuning as a constant = inj mλ λ λ−∆ =0.02nm. The measured 
values of minimum and maximum injection power that lead to spiking threshold response are presented in Table S3. It can 
be seen that, when the separation between the injection wavelength and the peak wavelength becomes large, the required 
minimum injection power is also increased.  

Thus, in experiments, there is a range of injection power that makes FP-SA operate as a photonic spiking neuron, and 
this range is different for different wavelength detuning conditions. Note, for different gain current and reverse voltage 
conditions, the injection power range will also be slightly different, but the overall trend is not changed. 

 
Table S2. The minimum and maximum injection power that lead to spike threshold response for different cases of 

wavelength detuning. 

Common conditions: GI =55.3mA, SAV =-2.689V, _FP SA peakλ − =1558.360nm, mλ =1561.432nm 

injλ  1561.442nm 1561.447nm 1561.452nm 1561.457nm 1561.462nm 

= inj mλ λ λ−∆  0.01 nm 0.015 nm 0.02 nm 0.025 nm 0.03 nm 

_mininjP  53.253 μW  57.267 μW  76.293 μW  77.427 μW  185.04 μW  

_maxinjP  72.486 μW  74.025 μW  107.46 μW  108.54 μW  217.26 μW  

 
Table S3. The minimum and maximum injection power that lead to spike threshold response when injecting near 

different longitudinal modes. 

Common conditions: GI =55.3mA, SAV =-2.689V， _FP SA peakλ − =1558.360nm, = inj mλ λ λ−∆ =0.02nm 

mλ  1561.192nm 1561.432nm 1561.672nm 1561.712nm 1562.152nm 

injλ  1561.212nm 1561.452nm 1561.692nm 1561.732nm 1562.172nm 

_mininjP  54.675 μW  82.305 μW  136.53 μW  176.13 μW  191.43 μW  

_maxinjP  81.648 μW  118.53 μW  171 μW  218.43 μW  228.69 μW  
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6. Simulation results of pattern recognition with PSNN for patterns “1234”. 
During the training process, an epoch means all the samples are feed to the network during the training process. 

When each neuron fires a spike or does not fire as defined by the target for all the input patterns, and the firing state 
maintains for at least 100 consecutive epochs, it is regarded as training convergence. The convergence epoch is 
defined as the first epoch of the 100 consecutive epochs. Here, the accuracy reached 100% during the training process. 

As shown in Fig. S3, each row is the simulation results of one number pattern. As shown in the first row, (a1) is 
the representation of number “1” in the 5×4 pixel matrix, the corresponding spatial-temporal spike encoding results 
of four pre-synaptic neurons are shown in (b1). (c1) and (d1) display the weighted signals that are injected into each 
POST and the corresponding responses of each POST for pattern “1”. (a2-d2), (a3-d3) and (a4-d4) are the simulation 
results of the number pattern “2”, “3” and “4”, respectively. 

 
Fig. S3. Simulation results of pattern recognition with PSNN for patterns “1” “2” “3” “4”. The representation of number 
patterns “1” (a1), “2” (a2), “3” (a3), and “4” (a4) in the 5×4 pixel matrix, respectively. (b1, b2, b3, b4) The spatial-temporal 
spike encoding results of four PREs corresponding to (a1, a2, a3, a4). (c1, c2, c3, c4) represent the inputs of each POST 
for the pattern “1”, “2”, “3”, and “4”, respectively. (d1, d2, d3, d4) the response of each POST corresponding to (c1, c2, 
c3, c4). 
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7. Reproducible experimental results of pattern recognition with PSNN for patterns “1234”. 
Note, in experiments, the electronic noise is inevitable in the AWG, PD, and OSC, as well as the environment variation and the FP-SA laser 

neuron’s noise. To demonstrate the robustness to noise of the pattern recognition results, we further presented the experimental colour-coded 

temporal maps plotting superimposed time series of the responses corresponding to 500 consecutive arriving stimuli events for the four 
patterns in Fig. S4. It can be seen that the same spiking response is obtained for each pattern for the 500 consecutive stimuli 
events. Hence, reproducible pattern classification results can be achieved with the fabricated photonic spiking neuron based 
on the FP-SA.  

 

Fig. S4.  Temporal maps plotting the response of photonic spiking laser neuron to the arrival of 500 consecutive external stimuli. 
(a) - (d) corresponds to pattern “1”, “2”, “3”, and “4”, respectively. 

 

8. The measured optical spectra for both FP-SA1 and FP-SA2. 
To construct a cascaded photonic SNN, we first let each FP-SA work alone, and inject the same external optical stimulus 

to FP-SA1 and FP-SA2. By adjusting the gain current and reverse voltage, both of FP-SA1 and FP-SA2 can exhibit neuron-
like spiking response to the same stimulus. Then the output of FP-SA1 is injected to FP-SA2, and for the injection power 
between 127.8μWand 184.5μW, the cascadability can be achieved. The optical spectra for both FP-SAs when the 
cascadability is achieved is presented in Fig. S5. 

 

Fig.S5.The optical spectrum of (a) FP-SA1 and (b) FP-SA2 in the cascaded configuration. 
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9. Simulation results of pattern recognition with PSNN for ‘XDU’ and ‘NJU’ tasks. 

Here, the network consists of 5 PREs and 3 POSTs for the pattern recognition task of “XDU”. For the pattern 

recognition task of “NJU”, the network with 10 PREs and 3 POSTs is employed.  
Figures S6 (a) and (c) are the training processes of patterns “XDU” and “NJU”, respectively. We can see that the 

training convergences for “XDU” and “NJU” are achieved at 26 epochs and 16 epochs, respectively. Figures S6 (b) 
and (d) show the weights after training convergence. As shown in Figs. S7 (a1-a4) and S8 (a1-a4), the input patterns are 
represented by a 5×5 pixel matrix. Each row shows the simulation results of one pattern, including the spatial-temporal spike 
encoding results of PREs, the weighted signals that are injected into each POST and the corresponding responses of each POST. 

 
Fig. S6. (a) The training process and (b) weight after training convergence for pattern “XDU”. (a) The training process and 
(b) weight after training convergence for pattern “NJU”. 

 
Fig. S7. The simulation results of pattern recognition for pattern “XDU”. 
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Fig. S8. The simulation results of pattern recognition for pattern “NJU”. 
 

 

10. Discussion on the energy consumption, operation speed and potential scalability. 
 
Energy consumption. In artificial neural networks, multiply-and-accumulate (MAC) operations are adopted for 
benchmarking. However, there is no standard benchmarking method for SNN consumption as SNN computations are 
based on spike events. Similar to Ref. [6], we consider an operation as one spike event in the SNN. One spike event 
means a neuron receives all the stimuli spikes from the previous layer and then generates a response spike. 

In our experiment, the FP-SA neuron is subject to modulated optical pulse injection. We take an example as follows 
to estimate the energy consumption. The power of optical injection is 83.835µW with all “0” inputs. The power of 
optical injection is 85.059µW with pulse inputs. Here, pulses occupy 1.67% of the time in a certain time slot. That is 
to say, the average power provided by the pulse is 1.224µW (85.059µW-83.835µW=1.224 µW). The peak dynamics 
power of pulse can be calculated as 73. 293µW (1.224 µW/1.67%=73. 293µW). The width of pulse of 0.1ns, and 
thus, the pulse provides the energy of 7.329fJ (73.293µW ×0.1ns=7.329fJ). In the experiment, a spike can be triggered 
in FP-SA neuron by a single input pulse mentioned above. Thus, the energy efficiency of the FP-SA neuron is 
7.329fJ/spike. As for the static power in our neurons, the power consumed is caused by optical injection with 
83.835µW.  

We further calculate the energy efficiency in terms of energy per MAC operation. In our experiment, time-multiplexed 
spike temporal encoding mechanism is used, and a MZM modulator is employed to realize the weighting function. The 
drive voltage and currents of the MZM modulator is 1.6V and 1mA. The electrical power consumed by a single modulator 
is 1.6mW. Thus, the electrical power consumed in our experiment is /total s wp MZMP P η P= + [7], where sP  stands for the 
optical power at the input of an axon, wpη  denotes wall-plug efficiency of a source laser. MZMP  is the electrical power 
consumed by the MZM modulator. Here, sP   is 10mW, wpη   is considered typically as 20%. MZMP   is 1.6mW. Thus, 

totalP  =51.6mW. Here, the modulation speed of the MZM modulator is 10GHz, Thus, we think the throughput is 
T=10GMAC/s. Thus, energy efficiency can be calculated as / 5.16 p /MAC totalE P T J MAC= =  [7]. Note, in electronic 



9 
 

approaches, the methods of benchmarking based on calculating the conventional multiply-accumulate (MAC) 
operation show 1300pJ/MAC in TrueNorth and 226.pJ/MAC in Loihi [6]. Thus, the proposed scheme exhibits better 
performance in terms of energy efficiency.  

 
Operation speed.  In our experiment, the maximum rate of external stimuli signal generated by the AWG is 10Gbps. On 
the one hand, when the input power is relatively low (i.e., single weak pulse cannot trigger a spike), the high speed input 
pulse can be temporally integrated by the FP-SA, and once the accumulated energy exceeds the spike threshold, a spike 
can be triggered. In this case, the spike processing speed can be estimated as 10Gbps. On the other hand, when the input 
power is sufficiently large (i.e., single stimulus pulse energy exceeds the spike threshold), a spike can be trigged upon the 
FP-SA receives the first stimulus pulse. However, the FP-SA cannot respond spikes successively. Due to the refractory 
period of the FP-SA (the measured value is about 0.3ns~0.5ns), the FP-SA cannot be triggered another spike within the 
refractory period. For this case, the FP-SA can process input pulse with rate of 10Gpbs, and its maximum spiking response 
rate is estimated at about 3.3Gbps (i.e., the inverse of refractory period). Note, the refractory period is related to the carrier 
recovery time, which will be different under distinct operation conditions. 
Potential scalability. On the one hand, the FP-SA can be easily integrated into large-scale bar array. For our fabricated 
chips, each bar contains about 83 chips. Thus, it has great potential to realize large-scale photonic spiking neurons array, 
especially with the proposed time-multiplexed temporal spike encoding approach. The scalability is mainly limited by the 
available packaging technique. On the other hand, it has suggested that the tensor-train decomposed synaptic 
interconnections could realize large-scale photonic neural networks with reduced hardware resources [8]. Thanks to the 
advancement of hybrid integration technique, the FP-SA array can be integrated with the synapse network based on the 
silicon photonics. Thus, by combining the advantages of tensor-train decomposed synaptic interconnection network and 
the time-multiplexed temporal spike encoding of the proposed FP-SA-based photonic spiking neuron array, it is expected 
to solve real-scale problems far beyond the hardware scalability limit. 
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