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1. Pulsed timestamp filter 16 

A filter was applied to the pulsed timestamp data before analysing the 𝑔(2)(𝜏)  and 𝑄(𝑇) 17 
functions. Using the trigger pulse output of the pulsed laser, the time delay between each photon 18 
detection and the previous trigger pulse was available for all our data. A histogram of the delay 19 
time after the trigger pulse is shown in Fig. S1. The filter was applied by keeping only the 20 
detections which arrive within a given time window after the trigger pulse; all filters begin from 21 
the peak of the pulse at 7 ns delay. The following describes the process of choosing the optimum 22 
filter settings to exclude background noise counts and measure 𝑄(𝑇) due to single photon 23 
emission counts only. 24 

 25 
Fig.S1. Lifetime curve showing 5 ns filter width applied to the data. 26 

The filter width was varied from 1 ns to applying no filter, i.e. using the raw data. The 27 
distribution of Q parameter values for 𝑇 = 100  ns integration time over all 144 data 28 
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acquisitions is plotted as a function of filter width in Fig. S2. The raw data is plotted at 100 ns 29 
filter width as this corresponds to the pulse period, i.e. maximum possible filter width. 30 

As the filter width goes to zero, 𝑄(𝑇) also goes to zero since the number of counts being 31 
used for the calculation decreases. 32 

Between 5 ns and 18 ns filter width there is a stable negative 𝑄(𝑇). Above 18 ns however 33 
𝑄(𝑇) increases sharply and becomes positive. There is another increase above 80 ns filter 34 
width. 35 

 36 
Fig.S2. (a) Mandel Q parameter at 100 ns integration time (integrating over one pulse period). 37 

Histograms show Q parameter values over the 144 data acquisitions each 100 s long, for 38 
different filter widths. (b) Mean Q parameter as a function of filter width. 39 

The sudden increase in 𝑄(𝑇) above 18 ns filter width can be attributed to an artefact of our 40 
measurement seen in the raw 𝑔(2)(𝜏) data, see Fig. S3. There are additional peaks at ±18 ns 41 
delay time in all 𝑔(2)(𝜏) measurements. This only occurs when using multimode fibre to collect 42 
the output light from our setup, the delay time is always the same regardless of the light source 43 
being observed, and changing the length of multimode fibre at the output changes the delay 44 
time at which the peaks appear. Therefore we conclude these peaks are due to reflections from 45 
the end facets of our multimode fibre and as such we treat them as noise. 46 

Using single mode fibres with angled (APC) connectors would solve this issue, however 47 
we use multimode fibre, which is widely used in other hBN experiments, in order to collect a 48 
high enough count rate under pulsed excitation to perform our measurements. 49 

Note that for CW 𝑔(2)(𝜏) measurements these peaks were still present, but since the peaks 50 
are narrow, they could be excluded from fitting procedures without significantly reducing the 51 
number of points used to fit models to the data. 52 



 53 

Fig.S3. Raw 𝑔(2)(𝜏) function for pulsed excitation with 24 μW mean power showing noise 54 
peaks at ±18 ns due to reflections in the multimode fibre. 55 

The final choice of filter was 5 ns wide, i.e. over [7,12] ns delay time. This filter setting 56 
excludes the noise peaks at ±18 ns in the 𝑔(2)(𝜏) function while keeping enough photon counts 57 
to measure 𝑄(𝑇) due to single photon counts from our hBN emitter. A 5 ns filter also produces 58 
the most significant negative Q value. This filter width is approximately double the radiative 59 
lifetime of the emitter: 𝜏21 = 2.7 ± 0.1 ns. 60 

We can also test the effect of applying a filter to the simulated pulsed timestamp data. In 61 
Fig. S4a we see that decreasing the filter width below ∼5 ns moves 𝑄(𝑇) closer to zero. Unlike 62 
the experimental data in Fig. S2b, 𝑄(𝑇) does not change significantly for filter widths above 63 
∼5 ns because: a. the simulated data has no background noise, and b. the noise peaks at ±18 ns 64 
delay are not present in the simulated data. 65 

 66 
Fig.S4. Mandel Q parameter for simulated pulsed timestamp data at 100 ns integration time. 67 

(a) Simulated Q parameter as a function of filter width. (b) Simulated Q parameter with 68 
uniformly distributed noise counts added to the simulated timestamp data. 69 

One clear difference between the simulated and experimental 𝑄(𝑇) histograms is that the 70 
simulation values are all clustered around a single value; the multiple peaks are only seen in 71 



the experimental data. We added noise to the simulation by adding uniformly distributed 72 
background counts to the simulated timestamps, with the same background count rate of 73 
160±40 Hz per detection channel measured from experimental lifetime curves. With added 74 
noise, the simulated 𝑄(𝑇) histograms in Fig. S4b do show multiple peaks and begin to resemble 75 
the experimental data more closely. 76 

2. Detector deadtime measurement 77 

The deadtime of our single photon avalanche diodes (SPADs) is nominally 77 ns. The deadtime 78 
must be known to choose an appropriate pulse repetition rate and to model the deadtime in 79 
Monte Carlo simulations. We measured the deadtime by detecting counts from room lights at 80 
around 4.4 MHz count rate, approaching the detector saturation count rate. The histogram of 81 
time delays between successive counts is shown in Fig. S5. 82 

 83 
Fig.S5. Detector deadtime measurement using a near saturation count rate from room lights. 84 
Histogram of delay times between successive photon detections, showing a sudden drop to 85 
zero below the detector deadtime. Taking the deadtime as the half rise time of the curves, 86 

detector 1 deadtime 𝑡𝑑 = (81.35 ± 0.10) ns; detector 2 deadtime 𝑡𝑑 = (80.35 ± 0.10) ns. At 87 
high time delays the histogram slowly decreases to zero because we only consider nearest-88 

neighbour delays. 89 

The histograms show a sudden drop to zero for delays less than the deadtime. At large time 90 
delays the histograms slowly decrease to zero because we only accounted for the nearest-91 
neighbour delays. Taking the deadtime to be the half-rise time of the curves gives values of 92 
𝑡𝑑 = (81.35 ± 0.10) ns for detector 1 and 𝑡𝑑 = (80.35 ± 0.10) ns for detector 2. For the 93 
purposes of simulating timestamps we took the deadtime to be 80 ns for both detectors. 94 

3. Detector afterpulsing 95 

As well as a deadtime, SPADs can produce accidental electronic pulses after a photon detection. 96 
This artefact is known as afterpulsing. 97 

Afterpulsing was characterised for our SPADs by measuring the histogram of delay times 98 
between trigger pulses and photon detections from the attenuated pulsed laser at 1 MHz 99 
repetition rate. Afterpulses are seen 80 ns after the pulse peak, and they decay with an 100 
exponential shape, see Fig. S6a. From this measurement the afterpulsing probability was 101 
determined to be 0.027, consistent with the datasheet value of <0.03. A single exponential with 102 
52 ns width was fitted to the afterpulse peak. 103 



 104 
Fig.S6. Detector afterpulsing. (a) Measurement of delay histogram between trigger pulses and 105 
photon detections using an attenuated pulsed laser at 1 MHz. An exponential shaped afterpulse 106 
is seen one deadtime after the pulse peak. (b) Simulated CW Mandel Q parameter with 80 ns 107 
deadtime, showing the difference between including afterpulsing (AP) in the model for two- 108 
and three-level emitters (2 lvl, 3 lvl). (c) Simulated CW Q parameter with no deadtime, with 109 

and without afterpulsing. Afterpulsing was modelled with a probability of 0.027 and an 110 
exponential probability distribution starting at 80 ns with 50 ns width. 111 

Afterpulses were also added to the Monte Carlo model for generating simulated timestamp 112 
data using the parameters we measured: an afterpulsing probability 0.027, and an exponential 113 
probability distribution starting 80 ns after detections with a width of 50 ns. The simulated data 114 
in Fig. 4b in the main text include these afterpulses. The effect of adding afterpulses is shown 115 
for two- and three-level emitters in Fig. S6b including the 80 ns detector deadtime, and Fig. 116 
S6c with no deadtime. In all cases afterpulsing causes more bunching in the Q(T) function 117 
above 80 ns. However, it is still clear that a three-level system is required to describe the extent 118 
of the bunching seen in experiment (Fig. 4a in main text).  119 

Due to the 5 ns filter applied to the pulsed timestamp data, most of the afterpulse counts are 120 
excluded from the 𝑄(𝑇) calculation. Only counts close to 100 ns (the pulse repetition period) 121 
after the pulse will be included, since they ‘wrap around’ and arrive at the same time as the next 122 
pulse. We estimate this effectively reduces the afterpulsing probability to 0.0017, i.e. the 123 
afterpulsing effect is more than an order of magnitude smaller for the pulsed timestamp data 124 
than the CW data. 125 

4. Pulsed g(2) as a function of power 126 

Fig. S7 shows the g(2)(τ) function under pulsed excitation as a function of the mean incident 127 
power, at 24 μW, 82 μW and 160 μW. The data had a 5 ns wide filter applied (over [7,12] ns 128 
delay after the trigger pulse). The value g(2)(0) was calculated as the ratio between the τ = 0 129 
peak area and the mean area of the 18 next nearest peaks, and the error was estimated as the 130 



standard deviation of the peak areas. Values for 𝑔(2)(0) were: 0.37 ± 0.02 at 24 μW, 0.69 ±131 
0.04 at 82 μW, and 0.83 ± 0.06 at 160 μW. 132 

 133 

Fig.S7. (a) 𝑔(2)(𝜏) under pulsed excitation at 24 μW. The 5 ns width filter (over [7,12] ns 134 
delay after the trigger pulse) was applied to all timestamp data before calculating 𝑔(2)(𝜏). (b) 135 

Zoom-in showing shape of 𝑔(2)(𝜏) peaks after the filter was applied. (c) Power dependence of 136 
𝑔(2)(0). 137 

We found that under pulsed excitation the 𝑔(2)(0) value was very sensitive to power and 138 
the low power needed to achieve 𝑔(2)(0) < 0.5 meant that the count rate had to be reduced 139 
significantly: the count rate was 2.8 kHz at 24 μW mean power. 140 

The background count rate was measured from a single exponential fit to the 24 μW lifetime 141 
curve as 160±40 Hz per detection channel (Fig. 2b in main text). This corresponds to only 0.04 142 
coincidences per time bin in the 24 μW 𝑔(2)(𝜏) histogram, therefore the background on the 143 
pulsed 𝑔(2) measurement was ignored. Note that the filtering process does remove background 144 
counts occurring outside the filter width. 145 

5. Emitter spectral filtering 146 

The output count rate as a function of tunable filter angle was converted into the spectrum in 147 
Fig. S8. The tunable filter bandwidth is around 20 nm. All measurements were done with the 148 
filter set to the maximum count rate at 595 nm (at 38o to optic axis). 149 

 150 
Fig.S8. Emission spectrum from our hBN emitter measured by rotating the angle tunable 151 
bandpass filter at the output. The bandpass filter has a bandwidth of around 20 nm. Peak 152 

emission count rate occurs at 595 nm, corresponding to a filter angle of 38o. 153 



The significance of using spectral filtering is to improve the 𝑔(2)(0) value for our emitter: 154 
without the filter (filter completely removed from optical path) 𝑔(2)(0) = 0.56 ± 0.10, with 155 
the filter set to peak count rate 𝑔(2)(0) = 0.33 ± 0.02 (see Fig. 1c in main text). 156 

6. Analytical solution for CW Q(T) 157 

There is an analytical relation between 𝑔(2)(𝜏) and 𝑄(𝑇) in the continuous wave (CW) case, 158 
for integration time 𝑇 and average photon count rate ⟨𝐼⟩ this is given by [1, 2]: 159 

𝑄(𝑇) =
2⟨𝐼⟩

𝑇
∫ 𝑑𝜏

𝑇

0

∫ 𝑑𝜏′
𝜏

0

(𝑔(2)(𝜏′) − 1) . (S1) 160 

 161 
We can calculate this for a 𝑔(2)(𝜏) function which is well described by a two-exponential 162 

fit with lifetimes 𝑡1, 𝑡2: 163 

𝑔(2)(𝜏′) = 1 − (1 + 𝑎) exp (−
|𝜏′|

𝑡1

) + 𝑎 exp (−
|𝜏′|

𝑡2

) . (S2) 164 

 165 
For simplicity the bunching amplitude is described by one parameter 𝑎, so that 𝑔(2)(0) = 0. 166 

Substituting into Eq. (S1): 167 

𝑄(𝑇) =
2⟨𝐼⟩

𝑇
∫ 𝑑𝜏

𝑇

0

∫ 𝑑𝜏′
𝜏

0

(−(1 + 𝑎) exp (−
|𝜏′|

𝑡1

) + 𝑎 exp (−
|𝜏′|

𝑡2

)) 168 

𝑄(𝑇) =
2⟨𝐼⟩

𝑇
∫ 𝑑𝜏

𝑇

0

(−𝑡1(1 + 𝑎) (1 − exp (−
𝜏

𝑡1

)) + 𝑡2𝑎 (1 − exp (−
𝜏

𝑡2

))) 169 

𝑄(𝑇) =
2⟨𝐼⟩

𝑇
(𝑡1

2(1 + 𝑎) − 𝑡2
2𝑎 − (𝑡1(1 + 𝑎) − 𝑡2𝑎)𝑇 − 𝑡1

2(1 + 𝑎) exp (−
𝑇

𝑡1

) + 𝑡2
2𝑎 exp (−

𝑇

𝑡2

)) . (S3) 170 

 171 
Here we have an analytical expression for the CW Mandel Q parameter for an ideal 172 

(𝑔(2)(0) = 0) single photon emitter including bunching. 173 
We can plot this function using values from CW 𝑔(2)(𝜏) measurements under 250 μW 174 

excitation. In Fig. S9 the analytical 𝑄(𝑇) expression is plotted for bunching parameter 𝑎 = 0.3, 175 
antibunching and bunching times 𝑡1 = 2.7 ns and 𝑡2 = 200 ns, and single photon count rate 176 
⟨𝐼⟩ = 34 kHz. Note that the count rate ⟨𝐼⟩ already includes the total detection efficiency so 177 
accounts for losses in the optical path. 178 



 179 
Fig.S9. Analytical solution for CW Mandel Q parameter. The function in Eq. (S3) was plotted 180 
with parameters 𝑎 = 0.3, 𝑡1 = 2.7 ns, 𝑡2 = 200 ns, and single photon count rate ⟨𝐼⟩ = 34 kHz. 181 

Shaded region shows the range plotted for experimental and simulated data in Fig. 4 of the 182 
main text. 183 

The shaded region indicates the range plotted for experimental and simulated 𝑄(𝑇) in Fig. 184 
4 of the main text. The limiting behaviour at high and low 𝑇  is the same as that in the 185 
experimental data; in particular 𝑄(𝑇) tends to zero at low 𝑇. We also see that the crossover 186 
time from negative to positive 𝑄(𝑇) occurs at around 21 ns, much lower than the 100 ns seen 187 
in the experimental data. The analytical model does not include all transition lifetimes of the 188 
three-level emitter 𝜏𝑖𝑗, or the effect of detector deadtime. 189 

It would also be possible to produce an analytical solution for the pulsed Mandel Q 190 
parameter. However, this would be more challenging because the pulsed 𝑔(2)(𝜏) histograms 191 
are noisier due to the relatively low photon count rate under pulsed excitation. As such there 192 
are fewer constraints when choosing a function to use in Eq. (S1), with parameters which model 193 
pulsed 𝑔(2)(𝜏) well. 194 
 195 
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