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Learning-based adaptive
under-sampling for Fourier single-pixel
imaging: Supplemental Document

This document provides supplementary information to Learning-based adaptive under-sampling for
Fourier single-pixel imaging. We provide the details of the designing strategy of under-sampling
masks, deep neural network (DNN) architecture, and some additional simulation and experimen-
tal results.

1. PREPARING OF UNDER-SAMPLING MASKS

A. circle under-sampling mask
Here we explain how we obtain the manually selected circle under-sampling mask used for
FSI-circle and FSI-DL. When calculating the spectrum of a color image, we actually divide the
process into the following steps shown in Figure S1:
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Fig. S1. Spectrum calculation of a color image. Step.1: Modulate the color image Oc(x, y) with
a CFA hc(x, y), then we get Ogray(x, y) which is a bayer-grayscale image. Step.2: Calculate the
spectrum of Ogray(x, y).

As plotted in Figure S1, the energy of the Fourier spectrum of a Bayer grayscale image is mainly
concentrated in the center of the image, but there are also notable concentrations of energy in the
four corners and midpoints of the spectrum image. The reason for this phenomenon is that we
used a CFA hc(x, y) in Step 1, which is composed of red, green, and blue channels together, and
can be expressed in the form of the following matrix:

hR =



0 1 . . . 0 1

0 0 · · · 0 0
...

. . .
...

0 1 . . . 0 1

0 0 · · · 0 0


, hG =



1 0 . . . 1 0

0 1 · · · 0 1
...

. . .
...

1 0 . . . 1 0

0 1 · · · 0 1


, hB =



0 0 . . . 0 0

1 0 . . . 1 0
...

. . .
...

0 0 . . . 0 0

1 0 · · · 1 0


,

(S1)
As shown in Figure S2, each single-spectral filter is constructed in the Fourier domain using

three pulse functions that are distributed at the center, as well as at the corners and midpoints of
the spectrum image. Therefore, when we use hc to modulate a color image, the color information
of different channels of Oc is also modulated to corner and midpoint regions by these pulse
functions. According to the conjugate symmetry of the spectrum (see Figure S3 (a)), the energy



of a complete Fourier spectrum of a Bayer grayscale image is concentrated in the center, four
corners, and midpoints (see Figure S3 (b)).
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Fig. S2. Spectrum of each single-spectrum filter
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Fig. S3. (a) Example of Conjugate Symmetry Schematic Diagram of Spectrum using 16 × 16
Pixel Size. For a grayscale image with an even number of rows and columns, the spectrum
exhibits conjugate symmetry, and the Ci and C∗

i regions exhibit a symmetry around the point
Ri (i = 1, 2, 3). (b) The mean Fourier intensity spectrum of 28,000 Bayer-CFA-sampled images
with 128 × 128 Pixel Size.

This inspires us to design the circle under-sampling mask Mcircle shown in Figure S4(a) to
impose importance sampling on the Fourier spectrum of a Bayer grayscale image. The sampling
ratio determined by Mcircle can be simply defined as

β ≈ 1.5 × 4πr2

m × n
(S2)

Here, r represents the radius of the circles. Therefore, we can design circular mask Mcircle with
different sampling ratios using circles with different radius r.

B. learned under-sampling mask
Here we describe details about how we obtain the learned under-sampling mask. Specifically,
we use a Monte Carlo-based sample averaging strategy for optimization. We also exploit some
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Fig. S4. Illustration of mask selection method in FSI-circle and FSI-DL. (a) A schematic of the
circular mask with radius r. (b) The circle masks uesd in FSI-circle and FSI-DL: The second row
is the result of the conjugate symmetry of the first row.

constraints to meet the binary and symmetry requirements. Finally, we apply post-processing
techniques to ensure that the desired sampling ratio is precisely achieved. More details can be
found in the released code: https://github.com/FeiWang0824/AuSamNet.

B.1. Monte Carlo-based sample averaging strategy

Our AuSamNet realizes the co-design of under-sampling mask M and the reconstruction DNN
model Rω by solving

M∗, ω∗ = arg min
M,ω

1
K

K

∑
i=1

∥Rω

(
F−1

(
M · F

(
Oi

gray

)))
− Oi

c∥2
2,

s.t.
1.5∥M∥1

m × n
= β,

(S3)

The major issue in Equation S3 is how to guarantee a given sampling ratio, i.e., 1.5∥M∥1
m×n = β and a

binary mask M. For this purpose, we introduce a normalization trick

Nβ(P) =


β
p̄ P p̄ ≥ β

1 − 1−β
1− p̄ (1 − P) others

(S4)

suppose p̄ = 1.5∥P∥1
m×n . According to the definition of Nβ(P), for a given input P that satisfy p̄ ≥ β,

Nβ(P) is smaller than P, and vice versa. Thus, the constrained optimization problem can be
turned into an unconstrained optimization problem

M∗, ω∗ = arg min
M,ω

1
K

K

∑
i=1

∥Rω ( F−1(σ1 ( Nβ (σ2 (M))− U(i) ) · F (Oi
gray)) )− Oi

c∥2
2, (S5)

where σi(x) = 1
1+e−ti ·x denotes a Sigmoid function with a trainable slope ti, which leads to

near-binary activated results, especially for a large ti. U(i) ∈ Rm×n ∼ U (0, 1).
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Fig. S5. Learned under-sampling mask, FSI results, and corresponding Fourier spectrum at
different training epochs.

We initialize t1 to 5 (which scales the learned mask to the (0,1) range), t2 to 200 (which performs
the thresholding operation), and M to a randomly generated matrix from a uniform distribution
on (0,1) with the same size as the target grayscale image. During training, the M, t1, t2 in the
encoder and Rω in the decoder are iteratively updated together. As shown in Figure S5, we show
the learned mask, FSI results using the learned mask, and corresponding spectrum at different
epochs. As the training epochs increase, it is evident that the learned mask distribution gradually
becomes more concentrated, resulting in improved FSI results. This clearly demonstrates the
adaptability of AuSamNet in designing optimal under-sampling masks. See more results in
Visualization 1.

B.2. guarantee of symmetry

According to Equation S5, one can hopefully obtain a binary under-sampling mask that satisfies
the constraint of a given sampling ratio. This is actually the method reported in Ref. [1]. However,
this learning strategy does not consider the conjugate symmetry property of the Fourier spectrum.
The learned under-sampling mask M∗ has no guarantee of symmetry, leading to the need to
collect some unnecessary information.

To address this limitation, we introduce a fixed matrix T (see Figure S6) to restrict the opti-
mization region of the under-sampling mask to only a half, and the final under-sampling mask
is obtained by symmetric calculation Full[·]. So the optimization problem of our AuSamNet is
defined as

M∗, ω∗ = arg min
M,ω

1
K

K

∑
i=1

∥Rω ( F−1(Full[T · σ1 ( Nβ (σ2 (M))− U(i) )] · F (Oi
gray)) )− Oi

c∥2
2.

(S6)
After optimization, the learned half under-sampling mask is

Mnet = T · σ1 ( Nβ (σ2 (M∗)) ) . (S7)

B.3. Pruning

In our experiment, we found that the learned mask Mnet (see Figure S7(a)) obtained directly
by AuSamNet can not exactly realize the required sampling ratio. For a fair comparison with
other SPI methods, we use some post-processing tricks to ensure the same sampling ratio. The
post-processing mainly contains three steps. First, for an expected sampling ratio, we find
points S(x, y)|(x, y) ∈ Mnet ∩ (x, y) /∈ Mcircle in the non-overlapping region between Mnet and
Mcircle. Second, we calculate the Euclidean distance between S(x, y) and its nearest adjacent
center Oi determined by Mcircle (see Figure S4(a)). Third, we order points in S(x, y) according
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Fig. S6. Matrix T used to restrict the optimization region.

CompleteSort & omit

（a） （c）（b）

Fig. S7. Illustration of pruning method. (a) The half mask with sampling rate of 15% directly
generated by the network; (b) The fine-tuned mask; (c) The completed mask.

to the calculated Euclidean distance and omit the points with higher distance to exactly realize
a given sampling ratio. As such, we obtain the final learned half under-sampling mask (see
Figure S7(b)) and it satisfies the requirements of the given sampling ratio. The full mask can be
simply calculated according to the conjugate symmetry property (see Figure S7(c)). Figure S8(b)
shows the whole learned under-sampling masks under different sampling ratio cases discussed
in this Letter.

The above correction method also has some drawbacks because it is difficult to artificially
determine which frequency components are more desirable for the Decoder. One does not have
to use the pruning method for correction when we don’t need to satisfy a given sampling rate.

𝛽 ≈ 7.5% 𝛽 ≈ 15% 𝛽 ≈ 22.5% 𝛽 ≈ 30% 𝛽 ≈ 37.5%

Fig. S8. The learned under-sampling mask for FSI-learned and our AuSamNet. The first row is
the mask directly learned by the network. The second row is the result after pruning. The last
row is the full masks.

B.4. Compared with FSI-DL using different under-sampling masks designed manually

In FSI-DL, selecting the right sampling mask is crucial, as different masks may affect the algo-
rithm’s performance. However, this raises the question of whether AuSamNet can outperform
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FSI-DL when different masks are used. To explore this issue, we conducted three simulation ex-
periments using a sampling rate of 7.5%, keeping the network architecture and training approach
constant but varying the under-sampling masks. Five types of masks were used for comparison.
Among them "Smaller", "Similar", and "Larger" (mask) represent cases where the radius of the
central region is smaller, equal to, and larger than that of "Ours" (the mask learned by AuSamNet),
respectively. "Average" represents the mask we used for FSI-DL in this work, in which the radius
of the central region is equal to that of the corners and midpoints regions.

Figure S9 presents a summary of our findings, demonstrating that our proposed method using
a learned under-sampling mask outperforms other methods relying on manually selected masks.
It is important to note that the size of the central region in the mask has a significant impact on
the quality of the reconstructed image. Specifically, reducing the central region size (as in the
"Smaller" scheme) produces a more vibrant color but a blurred contour in the reconstructed image,
while increasing the central region size (as in the "Larger" scheme) leads to a clearer contour but
may result in inaccurate color information recovery. The "Similar" scheme, with a central region
radius identical to our proposed method, produces better results than other manually designed
sampling schemes. However, determining the optimal radius of the central region without prior
knowledge is challenging. In contrast, AuSamNet provides an efficient approach for designing
the under-sampling mask adaptively and delivers superior reconstructions without the need for
manual selection of the central mask radius. We also tried different sampling rates (15% and
22.5%), and the results obtained were consistent with those obtained with 7.5% (see Figure S10
and Figure S11). Table S1 presents quantitative results that provide further evidence for our
argument.

Smaller Average Similar Larger Ours Label

Method PSNR SSIM

Smaller 21.9587 0.8074

Average 24.4280 0.8524

Similar 26.0614 0.8751

Lager 24.8542 0.8055

Ours 26.3667 0.8889

Note: 1000 unseen test images were

used for this evaluation.

𝜷 ≈ 𝟕. 𝟓%

a b

Fig. S9. Comparison of FSI-DL using different under-sampling masks Mcircle designed manu-
ally and our AuSamNet. β ≈ 7.5%.

Table S1. PSNR/SSIM of each method with β ≈ 7.5%, β ≈ 15%, and β ≈ 22.5%. 1000 unseen
test images were used for this evaluation.

β Smaller Average Similar Lager Ours

7.5% 21.96/0.81 24.43/0.85 26.06/0.88 24.85/0.81 26.37/0.89

15% 25.22/0.87 26.46/0.89 27.89/0.90 27.42/0.89 28.73/0.93

22.5% 25.09/0.88 27.28/0.91 29.83/0.94 28.53/0.90 30.21/0.95
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Smaller Average Similar Larger Ours Label

Method PSNR SSIM

Smaller 25.2204 0.8719

Average 26.4638 0.8935

Similar 27.8857 0.9045

Lager 27.4165 0.8898

Ours 28.7326 0.9289

Note: 1000 unseen test images were

used for this evaluation.

𝜷 ≈ 𝟏𝟓%

a b

Fig. S10. Comparison of FSI-DL using different under-sampling masks Mcircle designed manu-
ally and our AuSamNet. β ≈ 15%.

Smaller Average Similar Larger Ours Label

Method PSNR SSIM

Smaller 25.0901 0.8756

Average 27.2805 0.9121

Similar 29.8250 0,9377

Lager 28.5270 0.9049

Ours 30.2083 0.9470

Note: 1000 unseen test images were

used for this evaluation.

𝜷 ≈ 𝟐𝟐. 𝟓%

a b

Fig. S11. Comparison of FSI-DL using different under-sampling masks Mcircle designed manu-
ally and our AuSamNet. β ≈ 22.5%.

7



2. NEURAL NETWORK STRUCTURE

In the decoding part, we use a residual neural network depicted in Figure S12. Inspired by [2],
we use 16 residual blocks with the same layout and each block contains two convolution layers
with 3 × 3 kernels, 64 feature maps, followed by batch-normalization layer and Parametric ReLU.
We also use a demosaics operator[3] as the last layer of the network. This allows us to obtain the
predicted color image. See more details at https://github.com/FeiWang0824/AuSamNet.
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Fig. S12. Structure of the Decoder. Here, (k3n64s1) denotes a convolutional layer with a kernel
size of 3, a channel number of 64, and a stride of 1. The same representation style applies to
(k9n64s1).

3. SIMULATION RESULTS UNDER DIFFERENT SAMPLING RATIOS

See figure S13.

LabelFSI FSI-DLDCAN OursDGI HSI TV

7.5%

15%

22.5%

30%

37.5%

Fig. S13. Simulation results. From top to bottom are the results under different sampling ratios,
and from left to right are the results under different methods.

4. OPTICAL EXPERIMENTAL RESULTS UNDER DIFFERENT SAMPLING RATIOS

See Figure S14. The image quality is evaluated using the structural similarity index (SSIM) and
the peak signal-to-noise ratio (PSNR), which are expressed as follows

SSIM(X, Y) =
(2µXµY + c1) + (2σX,Y + c2)

(µ2
X + µ2

Y + c1)(ν
2
X + ν2

Y + c2)
(S8)
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PSNR(X, Y) = 10 log10
max(X)2

∥X − Y∥2
2/d

(S9)

Where X and Y represent the actual value and reference value respectively, µ∗ is the mean value
of ∗, ν∗ is the variance of ∗, νX,Yis the covariance of X and Y, and d represents the total number of
pixels in a single image.
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Fig. S14. Experimental results. We show the results of two different targets using FSI-learned,
FSI-circle, FSI-DL, and our AuSamNet under different sampling ratio cases. SSIM and PSNR
of these results are summarized in the right plots. FSI results under full sampling were used as
the ground truth.
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