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Analysis of linear excitations
The effective non-Hermitian Hamiltonian described in the main text can be obtained using the approximation of

linearized excitations, considering small fluctuations of the photonic δC and excitonic δX fields around their steady
states ψssC and ψssX . The derivation goes is analogous to the derivation of Bogoliubov-de Gennes modes in an interacting
Bose gas. In our analysis, the mean-field photonic and excitonic polariton components were

ψC(r, t) = ψssC e
−iωpt(1 + δC(r, t)), (SA.1)

ψX(r, t) = ψssX e
−iωpt(1 + δX(r, t)). (SA.2)

Substituting Eqs. (SA.1) and (SA.2) into the system of Eqs. (2) and (3), the evolution of particle-like δX and δC
and hole-like excitations, δ∗

X and δ∗
C were derived
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Keeping only the linear terms, Eqs. (SA.3)–(SA.6) can be written in a matrix form as
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Eigenenergies of the matrix are equivalent to the spectrum of elementary excitations of the system. Assuming that
the interaction strength between excitons is negligibly small (gX ≈ 0), considering the part of the spectrum near the
exceptional point where ψss

C

ψss
X

≈ ψss
X

ψss
C
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∗ ≈ 1, Eq. (SA.7) takes the form
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The block structure of the above matrix reflects the “normal” and “ghost” branches of the Bogoliubov excitation
spectrum of elementary excitations in the system. Focusing on the normal branch, for δC and δX we recover the
spectrum of the non-Hermitian Hamiltonian described by Eq. (5).
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Collective excitation spectrum
Bogoliubov quasiparticles are collective excitations emerging in superconductors and superfluids. Their signatures

in bosonic condensates include the characteristic linear dependence between the energy of elementary excitation and
the wave vector1. Additionally, Bogoliubov excitation spectrum is symmetric with respect to vacuum energy, which
results in the appearance of a virtual energy branch, the so-called "ghost branch".

According to the Landau criterion, a system with such a spectrum behaves like a superfluid. Therefore, observation
of Bogoliubov excitation was essential for understanding the nature of bosons scattering, interactions, and their
condensates stability.

In the case of nonequilibrium, incoherently pumped exciton-polariton condensates, Bogoliubov excitation has a more
complex character than in the equilibrium case. The nontrivial shape of the spectra is induced by the interaction
with an excitonic reservoir. Such an interaction can be observed even in resonantly excited systems2–5. During the
past several years, these interesting observations have stimulated numerous questions about the nature of collective
excitations in polariton condensates.

According to the theoretical framework presented in a recent work5, these effects can result from two-body inter-
actions. This work experimentally confirmed that the excitation observed in such a system exhibits a hybrid nature
connecting properties of the Bogoliubov and reservoir density excitations. The appearance of an additional excitonic
reservoir can drastically affect the superfluid properties and change the character of the quantum fluid spectrum.

Here, we want to point out some similarities between our experimental observation and the results of the previous
work5. Similarly as in the previous work5, we assume that thermally excited acoustic phonons generate an incoherent
reservoir which interacts with polaritons. From the experimental point of view, the main difference between our results
and the previous work is in the chosen material of the quantum well. Compared to the GaAs structure explored in
the previous work, our CdTe-based microcavity is characterized by the lack of observable energy blueshift of polariton
modes.

In result, the excitation spectrum in our case is substantially modified as the laser power is increased, with a visible
reduction of coupling strength and polariton up-conversion. However, due to the weakness of interactions, the effects
characteristic for the Bogoliubov quasiparticles, such as the linearized energy spectrum at low momenta and the ghost
branch, cannot be detected.

It should be noted that the exact physical mechanism for the observed up-conversion, and the role of biexciton or
dark exciton reservoir are under debate and will stimulate further discussion on this subject.
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